Longitudinal Analysis of Myocardial System Dysfunction using Multifunction Cardiogram Technology in a 55-year-old Male: A Clinical Case Report

Main Article Content

Scott Porter
Kenneth Herbst
Steven Layton
Norbert Rainford
Joseph T Shen

Abstract

Background: Hypertension-related myocardial dysfunction can be difficult to detect with traditional diagnostic tools, particularly when structural abnormalities are absent.
Case summary: A 55-year-old male with hypertension, hypothyroidism, metabolic syndrome, and long-term testosterone therapy underwent four serial Multifunction Cardiogram (MCG) evaluations across 26 months. He reported intermittent right-sided chest pain following COVID-19 infection and mRNA-based vaccination. Initial MCG findings demonstrated severe metabolic dysfunction and small-vessel or functional ischemia. Serial evaluations revealed fluctuating patterns of local and global ischemia influenced by hormonal, inflammatory, and metabolic factors. Improvements occurred after optimizing antihypertensive therapy, reducing exogenous hormone doses, and adopting dietary modifications.
Conclusion: Longitudinal MCG monitoring provided unique physiologic insights into the progression and partial reversibility of myocardial dysfunction in a complex cardiometabolic case. These findings suggest that serial MCG assessments may complement standard diagnostics and support individualized management strategies.

Article Details

Porter, S., Herbst, K., Layton, S., Rainford, N., & T Shen, J. (2025). Longitudinal Analysis of Myocardial System Dysfunction using Multifunction Cardiogram Technology in a 55-year-old Male: A Clinical Case Report. Archives of Case Reports, 379–382. https://doi.org/10.29328/journal.acr.1001176
Case Presentations

Copyright (c) 2025 Porter S, et al.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

1. Pan JA, Patel AR. The role of multimodality imaging in cardiomyopathy. Curr Cardiol Rep. 2024;26(7):689-703. Available from: https://doi.org/10.1007/s11886-024-02068-9

2. Farrar J, Frieden T. WHO global report on hypertension. Lancet. 2025;406(10517):2318-2319. Available from: https://doi.org/10.1016/s0140-6736(25)02208-1

3. Frieden TR, Jaffe MG. Saving 100 million lives by improving global treatment of hypertension and reducing cardiovascular disease risk factors. J Clin Hypertens (Greenwich). 2018;20(2):208-211. Available from: https://doi.org/10.1111/jch.13195

4. Rainford N, Shen J, Bianchi Shen R. Chapter 12: Multifunction Cardiogram (MCG Technology). In: Houston M, editor. Personalized and Precision Integrative Cardiovascular Medicine. 1st ed. 2023. Available from: https://townsendletter.com/multifunction-cardiogram-the-theoretical-basis-and-rationale-for-its-creation/

5. Weiss MB, Narasimhadevara SM, Feng GQ, Shen JT. Computer-enhanced frequency-domain and 12-lead electrocardiography accurately detect abnormalities consistent with obstructive and nonobstructive coronary artery disease. Heart Dis. 2002;4(1):2-12. Available from: https://doi.org/10.1097/00132580-200201000-00002

6. Grube E, Bootsveld A, Yuecel S, Shen JT, Imhoff M. Computerized two-lead resting ECG analysis for the detection of coronary artery stenosis. Int J Med Sci. 2007;4(5):249-263. Available from: https://doi.org/10.7150/ijms.4.249

7. Grube E, Bootsveld A, Buellesfeld L, Yuecel S, Shen JT, Imhoff M. Computerized two-lead resting ECG analysis for the detection of coronary artery stenosis after coronary revascularization. Int J Med Sci. 2008;5(2):50-61. Available from: https://doi.org/10.7150/ijms.5.50

8. Hosokawa J, Shen JT, Imhoff M. Computerized 2-lead resting ECG analysis for detection of relevant coronary artery stenosis compared with angiographic findings. Congest Heart Fail. 2008;14(5):251-260. Available from: https://doi.org/10.1111/j.1751-7133.2008.00003.x

9. Strobeck JE, Shen JT, Singh B, Obunai K, Miceli C, Sacher H, et al. Comparison of a two-lead computerized resting ECG signal analysis device (MCG/3DMP) to quantitative coronary angiography for detection of relevant coronary artery stenosis (>70%): meta-analysis of US trials. Int J Med Sci. 2009;6(4):143-155. Available from: https://doi.org/10.7150/ijms.6.143

10. Strobeck JE, Mangieri A, Rainford N. A paired-comparison of the MultiFunction Cardiogram (MCG) and Sestamibi SPECT myocardial perfusion imaging to quantitative coronary angiography for detecting ≥70% coronary artery obstruction: single-center study of 116 patients. Int J Med Sci. 2011;8(8):717-724. Available from: https://www.premierheart.com/_files/ugd/70e11e_75e54f2cc85b4c33afeddd11ada57f60.pdf

11. Strobeck JE, Rainford N, Arkus B, Imhoff M. Comparing Multifunction-Cardiogram and coronary angiography for detection of hemodynamically relevant coronary artery stenosis (>70%) in women. Treatment Strategies. 2010. Available from: https://www.premierheart.com/_files/ugd/70e11e_72ad10ae966049b7baaef05dbbbeee05.pdf?index=true

12. Amano T, Shinoda N, Kunimura A, Harada K, Uetani T, Takashima H, et al. Noninvasive assessment of functionally significant coronary stenoses through mathematical analysis of spectral ECG components. 2014. Available from: https://openheart.bmj.com/content/openhrt/1/1/e000144.full.pdf

13. Shinoda N. Noninvasive mathematical analysis of spectral electrocardiographic components for coronary lesions of intermediate to obstructive stenosis severity: relationship with classic and functional SYNTAX score. Catheter Cardiovasc Interv.

14. Amano T, Shinoda N, Takashima H, Kurita A, Ando H, Harada K, et al. Impact of noninvasive mathematical analysis of spectral electrocardiographic components on predicting recurrent cardiac ischemic events after coronary intervention: abstract submitted for 2015 PCI TCT, San Francisco. 2015. Available from: https://www.premierheart.com/_files/ugd/70e11e_ca8fbbed3bfe4bda8a95d12e488c28e2.pdf?index=true

15. Kawaji T, Shiomi H, Morimoto T, Nishikawa R, Yano M, Higami H, et al. Noninvasive detection of functional myocardial ischemia: Multifunction Cardiogram evaluation in diagnosis of functional coronary ischemia study (MED-FIT). Ann Noninvasive Electrocardiol. 2015;20(5):446-453. Available from: https://doi.org/10.1111/anec.12251

16. Imhoff M, Rainford N. A rebuttal letter to the editor: It all depends on your references—electrophysiology compared to angiography. Noninvasive Electrocardiol J. 2015. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC6931653/

17. Kimura T. Validation of Multifunction Cardiogram (MCG) in the screening of coronary atherosclerosis. Japanese-style retraction notice.

18. Yeap BB, Grossmann M. Testosterone and cardiovascular disease risk. World J Mens Health. 2024;42(4):749-761.

19. Budoff MJ, Ellenberg SS, Lewis CE, Mohler ER 3rd, Wenger NK, Bhasin S, et al. Testosterone treatment and coronary artery plaque volume in older men. N Engl J Med. 2023;389:107-117. Available from: https://doi.org/10.1001/jama.2016.21043

20. Kwon J. Deep-learning–based electrocardiogram analysis for detection of myocardial ischemia. JACC Cardiovasc Imaging. 2022;15(7):1184–1197.

21. Attia ZI. Artificial intelligence-enabled ECG for diagnosis of left ventricular dysfunction. Nat Med. 2021;27:1474–1482.

22. Kotecha T. Patterns of myocardial injury in recovered COVID-19 patients. JAMA Cardiol. 2021;6(7):880–889.

23. Mai F. Cardiac involvement in COVID-19: mitochondrial mechanisms. Eur Heart J. 2022;43(5):457–466.

24. Taqueti VR, Di Carli MF. Coronary microvascular disease and reversible ischemia. Circulation. 2022;145(2):140–158.

25. Schiattarella GG. Targeting metabolic pathways for heart failure recovery. Nat Rev Cardiol. 2023;20:125–140.

26. Weiner RB. Cardiac remodeling in strength athletes. Circulation. 2021;143(20):1952–1962.

27. Sabastien-Herzig , Reuben J Shaw. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol. 2018; 19:121–135.

Available from: https://www.nature.com/articles/nrm.2017.95

28. Laplante M, Sabatini DM. mTOR signaling at a glance. J Cell Sci. 2009;122(20):3589–3594. Available from: https://doi.org/10.1242/jcs.051011

29. Herzig S, Shaw RJ. AMPK as a regulator of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol. 2021;22:251–268. Available from: https://doi.org/10.1038/nrm.2017.95

30. Laplante M, Sabatini DM. mTOR signaling in human disease. Cell. 2022;185:3554–3573. Available from: https://doi.org/10.1016/j.cell.2012.03.017

31. Ferrannini G. Reversal of cardiac metabolic dysfunction with targeted therapy. Eur Heart J. 2023;44:310–322.

32. Lim GB. Hormonal modulation in cardiometabolic disease. Nat Rev Endocrinol. 2024;20(3):157–168.