Amblyomma spp. Tick Parasitizing a Veterinarian, an Occupational Risk
Main Article Content
Abstract
Ticks of the genus Amblyomma are blood-sucking arthropods that parasitize humans and potentially transmit pathogens of public health relevance. In the event of a tick bite, it is imperative to understand the correct method for removing, preserving, identifying and potentially utilizing them for the purpose of pathogen detection. Healthcare professionals and the public should be aware of the health implications associated with these ectoparasites. Specimen handling could have been improved to facilitate precise species determination and screening of pathogens with public health significance.
Article Details
Copyright (c) 2025 González-Álvarez VH, et al.

This work is licensed under a Creative Commons Attribution 4.0 International License.
The Archives of Case Reports is committed in making it easier for people to share and build upon the work of others while maintaining consistency with the rules of copyright. In order to use the Open Access paradigm to the maximum extent in true terms as free of charge online access along with usage right, we grant usage rights through the use of specific Creative Commons license.
License: Copyright © 2017 - 2025 | Open Access by Archives of Case Reports is licensed under a Creative Commons Attribution 4.0 International License. Based on a work at Heighten Science Publications Inc.
With this license, the authors are allowed that after publishing with the journal, they can share their research by posting a free draft copy of their article to any repository or website.
Compliance 'CC BY' license helps in:
Permission to read and download | ✓ |
Permission to display in a repository | ✓ |
Permission to translate | ✓ |
Commercial uses of manuscript | ✓ |
'CC' stands for Creative Commons license. 'BY' symbolizes that users have provided attribution to the creator that the published manuscripts can be used or shared. This license allows for redistribution, commercial and non-commercial, as long as it is passed along unchanged and in whole, with credit to the author.
Please take in notification that Creative Commons user licenses are non-revocable. We recommend authors to check if their funding body requires a specific license.
1. Nicholson WL, Sonenshine DE, Noden BH, Brown RN. Ticks (ixodida). In: Medical and veterinary entomology. Amsterdam: Elsevier; 2019;603-672. Available from: https://doi.org/10.1016/B978-0-12-814043-7.00027-3
2. Smit A, Mulandane F, Labuschagne M, Wójick SH, Malabwa C, Sili G, et al. Intra- and interspecific variation of Amblyomma ticks from southern Africa. Parasites Vectors. 2024;17:364. Available from: https://doi.org/10.1186/s13071-024-06394-3
3. Perumalsamy N, Sharma R, Subramanian M, Nagarajan SA. Hard ticks as vectors: The emerging threat of tick-borne diseases in India. Pathogens. 2024;13:556. Available from: https://doi.org/10.3390/pathogens13070556
4. Guzmán-Cornejo C, Robbins RG, Guglielmone AA, Montiel-Parra G, Pérez TM. The Amblyomma (Acari: Ixodida: Ixodidae) of Mexico: identification keys, distribution and hosts. Zootaxa. 2011;2998:16-38. Available from: https://doi.org/10.11646/zootaxa.2998.1.2
5. Guglielmone AA, Nava S, Robbins RG. Geographic distribution of the hard ticks (Acari: Ixodida: Ixodidae) of the world by countries and territories. Zootaxa. 2023;5251:1-274. Available from: https://doi.org/10.11646/zootaxa.5251.1.1
6. Borsoi ABP, Bitencourth K, de Oliveira SV, Amorim M, Gazêta GS. Human parasitism by Amblyomma parkeri ticks infected with candidatus Rickettsia paranaensis, Brazil. Emerg Infect Dis. 2019;25:2339-2341. Available from: https://doi.org/10.3201/eid2512.190988
7. Egan SL, Lettoof DC, Oskam CL. First record of the stump-tailed lizard tick, Amblyomma albolimbatum (Ixodida, Ixodidae) parasitising a human. Ticks Tick Borne Dis. 2022;13:101873. Available from: https://doi.org/10.1016/j.ttbdis.2021.101873
8. Kennedy AC, Marshall E. Lone Star Ticks (Amblyomma americanum): An emerging threat in Delaware. Dela J Public Health. 2021;7:66-71. Available from: https://doi.org/10.32481/djph.2021.01.013
9. Martins TF, Teixeira RHF, Souza JC, Luz HR, Montenegro MM, Jerusalinsky L, et al. Ticks (Parasitiformes: Ixodida) on new world wild primates in Brazil. Int J Acarol. 2021;47:95-106. Available from: https://doi.org/10.1080/01647954.2020.1870554
10. Nava S, Caparrós JA, Mangold AJ, Guglielmone AA. Ticks (Acari: Ixodida: Argasidae, Ixodidae) infesting humans in Northwestern Córdoba province, Argentina. Medicina (B Aires). 2006;66:225-228. Available from: https://www.scielo.org.ar/pdf/medba/v66n3/v66n3a06.pdf
11. Ledger KJ, Innocent H, Lukhele SM, Dorleans R, Wisely SM. Entomological risk of African tick-bite fever (Rickettsia africae infection) in Eswatini. PLoS Negl Trop Dis. 2022;16:e0010437. Available from: https://doi.org/10.1371/journal.pntd.0010437
12. Castillo-Martínez A, Cueto-Medina SM, Hernández-Rodríguez S, Salinas-Ramírez N, Romero-Santos RD, Martínez-Patricio G, et al. Amblyomma mixtum Koch (Acari: Ixodidae) en ambientes peridomésticos de la Región Otomí-Tepehua, Hidalgo, México. Rev Chil Entomol. 2020;46:661-669. Available from: http://dx.doi.org/10.35249/rche.46.4.20.12
13. Rodríguez-Vivas RI, Apanaskevich DA, Ojeda-Chi MM, Trinidad-Martínez I, Reyes-Novelo E, Esteve-Gassent MD, et al. Ticks collected from humans, domestic animals, and wildlife in Yucatan, Mexico. Vet Parasitol. 2016;215:106-113. Available from: https://doi.org/10.1016/j.vetpar.2015.11.010
14. Rodríguez-Vivas RI, Ojeda-Chi MM, Ojeda Robertos NF, Dzul-Rosado KR. The tick Amblyomma parvum as a potential vector of pathogens in animals and humans. Bioagrosciences. 2022;15:1-9. Available from: https://www.revista.ccba.uady.mx/ojs/index.php/BAC/article/view/4163
15. Rodríguez-Vivas RI, Ojeda-Chi MM, Torres-Castro MA, Sánchez-Montes S, PantiMay A, Reyes-Novelo E. Amblyomma dissimile (Acari: Ixodidae): Tick of amphibians and reptiles. Bioagrociencias. 2022;15:56-64. Available from: https://www.revista.ccba.uady.mx/ojs/index.php/BAC/article/view/4283
16. Sosa-Gutierrez CG, Vargas-Sandoval M, Torres J, Gordillo-Pérez G. Tick-borne rickettsial pathogens in questing ticks, removed from humans and animals in Mexico. J Vet Sci. 2016;17:353-360. Available from: https://doi.org/10.4142/jvs.2016.17.3.353
17. Walker AR, Bouattour A, Camicas J-L, Preston PM. Ticks of Domestic Animals in Africa: A Guide to Identification of Species. Edinburgh: Bioscience Reports; 2014. Available from: https://www.alanrwalker.com/assets/PDF/tickguide-africa.pdf
18. Almazán C, Torres-Torres A, Torres-Rodriguez L, Soberanes-Cespedes N, Ortiz-Estrada M. Biological aspects of Amblyomma mixtum (Koch, 1844) in northeastern Mexico. Queh Cient Chiapas. 2016;11:10-19. Available from: https://www.dgip.unach.mx/index.php/16-revista-quehacer-cientifico-en-chiapas/231-volumen-11-numero-2-julio-diciembre-de-2016
19. Labruna MB, Souza SL, Menezes AC, Horta MC, Pinter A, Gennari SM. Life-cycle and host specificity of Amblyomma tigrinum (Acari: Ixodidae) under laboratory conditions. Exp Appl Acarol. 2002;26:115-125. Available from: https://doi.org/10.1023/a:1020957122256
20. Olegário MM, Gerardi M, Tsuruta SA, Szabó MP. Life cycle of the tick Amblyomma parvum Aragão, 1908 (Acari: Ixodidae) and suitability of domestic hosts under laboratory conditions. Vet Parasitol. 2011;179:203-208. Available from: https://doi.org/10.1016/j.vetpar.2011.01.056
21. Piña FTB, da Silva Rodrigues V, de Oliveira Souza Higa L, Garcia MV, Barros JC, de León AAP, et al. Life cycle of Amblyomma mixtum (Acari: Ixodidae) parasitizing different hosts under laboratory conditions. Exp Appl Acarol. 2017;73:257-267. Available from: https://doi.org/10.1007/s10493-017-0178-y
22. Sanches GS, Bechara GH, Garcia MV, Labruna MB, Szabó MP. Biological aspects of Amblyomma brasiliense (Acari: Ixodidae) under laboratory conditions. Exp Appl Acarol. 2008;44:43-48. Available from: https://doi.org/10.1007/s10493-007-9127-5
23. Szabó MP, Pereira Lde F, Castro MB, Garcia MV, Sanches GS, Labruna MB. Biology and life cycle of Amblyomma incisum (Acari: Ixodidae). Exp Appl Acarol. 2009;48:263-271. Available from: https://doi.org/10.1007/s10493-008-9234-y
24. Binder LC, Tauro LB, Farias AA, Labruna MB, Diaz A. Molecular survey of flaviviruses and orthobunyaviruses in Amblyomma spp. ticks collected in Minas Gerais, Brazil. Rev Bras Parasitol Vet. 2019;28:764-768. Available from: https://doi.org/10.1590/s1984-29612019071
25. Childs JE, Paddock CD. The ascendancy of Amblyomma americanum as a vector of pathogens affecting humans in the United States. Annu Rev Entomol. 2003;48:307-337. Available from: https://doi.org/10.1146/annurev.ento.48.091801.112728
26. Guzmán-Cornejo C, Herrera-Mares A, García-Prieto L, Oceguera-Figueroa A, López-Pérez AM, Dzul-Rosado K. Potential zoonotic role of the tick Amblyomma cf. oblongoguttatum (Ixodida: Ixodidae) in the bacterial transmission of Ehrlichia chaffeensis (Rickettsiales: Anaplasmataceae) in a deciduous tropical forest in Mexico. J Med Entomol. 2024;61:1026-1030. Available from: https://doi.org/10.1093/jme/tjae047
27. Lippi CA, Gaff HD, White AL, Ryan SJ. Scoping review of distribution models for selected Amblyomma ticks and rickettsial group pathogens. PeerJ. 2021;9:e10596. Available from: https://doi.org/10.7717/peerj.10596
28. Prado RFS, Araújo IM, Cordeiro MD, Baêta BA, Silva JB, Fonseca AH. Diversity of tick species (Acari: Ixodidae) in military training areas in Southeastern Brazil. Braz J Vet Parasitol. 2022;31(2):e001322. Available from: https://doi.org/10.1590/S1984-29612022027
29. Uilenberg G. Veterinary significance of ticks and tick-borne diseases. In: Tick Vector Biology. Berlin, Heidelberg: Springer; 1992;23-33. Available from: https://doi.org/10.1007/978-3-642-76643-5_2
30. Maggi RG, Mascarelli PE, Havenga LN, Naidoo V, Breitschwerdt EB. Co-infection with Anaplasma platys, Bartonella henselae and Candidatus Mycoplasma haematoparvum in a veterinarian. Parasit Vectors. 2013;6:103. Available from: https://doi.org/10.1186/1756-3305-6-103
31. Van Gestel M, Heylen D, Verheyen K, Fonville M, Sprong H, Matthysen E. Recreational hazard: Vegetation and host habitat use correlate with changes in tick-borne disease hazard at infrastructure within forest stands. Sci Total Environ. 2024;919:170749. Available from: https://doi.org/10.1016/j.scitotenv.2024.170749
32. Roupakias S, Mitsakou P, Nimer AA. Tick removal. J Prev Med Hyg. 2011;52:40-44. Available from: https://pubmed.ncbi.nlm.nih.gov/21710824/
33. Ozkan OV. Tick removal from the skin. ANZ J Surg. 2009;79:308-309. Available from: https://doi.org/10.1111/j.1445-2197.2009.04872.x
34. Haddad V Jr, Haddad MR, Santos M, Cardoso JLC. Skin manifestations of tick bites in humans. An Bras Dermatol. 2018;93:251-255. Available from: https://doi.org/10.1590/abd1806-4841.20186378
35. Roupakias S, Mitsakou P, Al Nimer A. Surgical tick removal. Wilderness Environ Med. 2012;23:97-99. Available from: https://doi.org/10.1016/j.wem.2011.09.003
36. Eisen L. Pathogen transmission in relation to duration of attachment by Ixodes scapularis ticks. Ticks Tick Borne Dis. 2018;9:535-542. Available from: https://doi.org/10.1016/j.ttbdis.2018.01.002
37. Levin ML, Troughton DR, Loftis AD. Duration of tick attachment necessary for transmission of Anaplasma phagocytophilum by Ixodes scapularis (Acari: Ixodidae) nymphs. Ticks Tick Borne Dis. 2021;12:101819. Available from: https://doi.org/10.1016/j.ttbdis.2021.101819
38. Militzer N, Bartel A, Clausen P-H, Hoffmann-Köhler P, Nijhof AM. Artificial feeding of all consecutive life stages of Ixodes ricinus. Vaccines. 2021;9:385. Available from: https://doi.org/10.3390/vaccines9040385
39. Richards SL, Langley R, Apperson CS, Watson E. Do tick attachment times vary between different tick-pathogen systems? Environments. 2017;4:37. Available from: https://doi.org/10.3390/environments4020037
40. Rocha SC, Velásquez CV, Aquib A, Al-Nazal A, Parveen N. Transmission cycle of tick-borne infections and co-infections, animal models and diseases. Pathogens. 2022;11:1309. Available from: https://doi.org/10.3390/pathogens11111309