New Scientific Progress Perspective with Proposed Revision of Current Physics Fundamentals
Main Article Content
Abstract
Conversely to widespread popular belief, different elder and newly established theories, including quantum mechanics, the theory of relativity, and of quantum vacuum, are not satisfactory in giving an account for different experimentally observed physical effects. This is considering that the corresponding physical qualitative description of observed effects, has not to be confused with its Mathematical-Physics treatment, which provides some virtual hypothetical statements. To be mentioned in a first step, the solid-state material physics and the undetermined time/location of quantum states, concerning the interpretation of the Raman effect, of Superconductivity and Semiconducting properties and of some endothermal material phase transitions of better performing advanced carbon materials which can then be used for many more demanding solid-state optoelectronic and mechanical applications, including the determination of the carbon phase content of asteroid providing improved knowledge on their origin. With the next steps, we discuss the validity of the developed theories of relativity and of quantum vacuum energy, referring to identified anomalies concerning the fundamentals of the optical properties of light, the description of the particle/wave duality, and the interpretation of the Doppler effect, and about the deflection of a light beam by some celestial bodies. All these, coming out to the rejection of the theoretical mathematical concept of the Space/Time curvature, and to some rehabilitation of the absolute Aether with newly defined specific properties. Last one, suggested to give account for several observed physical effects to be better complete interpreted, and particularly concerning the entanglement of distant subatomic particles, the interference pattern of discontinuously emitted single particles through young slits and the propagation speed of the light and of gravity waves which is suggested to be not constant, and which are opening new perspectives for an improved knowledge of the Universe.
Article Details
Copyright (c) 2025 Neuville S.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Schroeder P. The Law of Universal Gravitation: Newton, Euler and Laplace: The Journey from a Scientific Revolution to Normal Science. Paris: Springer; 2007. 553 p. Available from: https://books.google.co.in/books/about/La_loi_de_la_gravitation_universelle_New.html?id=_cfLCa4La9cC&redir_esc=y
Abraham R, Marsden JE. Foundations of Mechanics. 2nd ed. Reading, MA: Benjamin/Cummings Pub. Co; 1978. Available from: https://bookstore.ams.org/chel-364.h
Hamilton WR. On the application to dynamics of a general mathematical method previously applied to optics. In: British Association Report. 1834. p. 513-518. Available from: https://www.emis.de/classics/Hamilton/BARep34A.pdf
Strong J. Concepts of Classical Physics. Mineola, NY: Dover Publications; 2004. Originally published 1958 by WH Freeman, San Francisco. Available from: https://books.google.co.in/books/about/Concepts_of_Classical_Optics.html?id=VaPhQhll2BUC&redir_esc=y
Knudsen JM, Hjort P. Elements of Newtonian Mechanics. Illustrated ed. Springer Science & Business Media; 2012. p. 30. Available from: https://unina2.on-line.it/sebina/repository/catalogazione/documenti/Knudsen,%20Hjorth%20-%20Elements%20of%20newtonian%20mechanics.pdf
Lahiri A. Basic Optics Principles and Concepts. Elsevier; 2016. Available from: https://www.amazon.in/Basic-Optics-Principles-Avijit-Lahiri/dp/0128053577
Maxwell JC. A dynamical theory of the electromagnetic field. Philosophical Transactions of the Royal Society of London. 1865;155:459-512. Available from: https://www.bem.fi/library/1865-001.pdf
Poincaré H. The relation between experimental and mathematical physics. General Review of Pure and Applied Sciences. 1900;11:1163-1175. Available from: https://henripoincarepapers.univ-nantes.fr/chp/hp-pdf/hp1902mo.pdf
Planck M. Elementary quanta of matter and electricity. Annalen der Physik. 1901;4(3):564-566.
Planck M. Quantum statistics of the Bohr atom model. Annalen der Physik. 1924;75(2):673-684.
Bohr N. On the constitution of atoms and molecules. Philosophical Magazine. 1913;26:1-25. Available from: https://doi.org/10.1080/14786441308634955
Lenard P v. On the photoelectric effect. Annalen der Physik. 1902;8:149-196.
Einstein A. Heuristic point of view toward the emission and propagation of light. Annalen der Physik. 1905;17(132). Translated in English by A B Arous & M B Peppard (1965). Einstein’s proposal of the photon concept. American Journal of Physics. 1965;33(5):367-430. Available from: http://dx.doi.org/10.1002/andp.19053220607
Michelson AA, Morley EW. On the relative motion of the Earth and the luminiferous ether. Philosophical Magazine. 1887;24:449-463. Available from: https://en.wikisource.org/wiki/On_the_Relative_Motion_of_the_Earth_and_the_Luminiferous_Ether
Lorentz HA. The relative motion of the Earth and the ether. In: Essays on Theoretical Physics. Leipzig: BG Teubner; 1892. Available from: https://en.wikisource.org/wiki/The_Relative_Motion_of_the_Earth_and_the_Aether
Pierseaux Y. From Poincaré’s Electro-Gravitational Ether to Cosmological Background Radiation (3°K). Journal of Modern Physics. 2020;11(9). Available from: https://www.scirp.org/reference/referencespapers?referenceid=2829096
Soldner JG. On the deflection of a light ray from its rectilinear motion by the attraction of a celestial body at which it nearly passes by. Berliner Astronomisches Jahrbuch. 1804:161-172. Available from: https://www.scirp.org/reference/referencespapers?referenceid=1799627
Einstein A. On the electrodynamics of moving bodies. Annals of Physics. 1905;322(10):891-921. Original citation: Annalen der Physik. 1905;17(4):891-921. Available from: https://users.physics.ox.ac.uk/~rtaylor/teaching/specrel.pdf
Einstein A. Does the inertia of a body depend upon its energy content? Annals of Physics. 1905;323(13):639-641. Original citation: Annalen der Physik. 1905;18(7):639-641. Available from: https://zenodo.org/records/1424057
Moylan P, Lombardi J, Moylan S. Poincaré and Einstein on Mass-Energy Equivalence: A Modern Perspective on their 1900-1905 Papers. American Journal of Undergraduate Research. 2016;13(1):5-10. Available from: https://arxiv.org/abs/2305.11852
Einstein A. On the elementary process of light emission experiment. Proceedings of the General Session 8 of the Prussian Academy of Sciences. 1921:882-883.
de Broglie L. On the possibility of relating interference and diffraction phenomena to the quantum theory of light. C R Acad Sci. 1926;183:447. Available from: https://ftp.math.utah.edu/pub/bibnet/authors/d/debroglie-louis.pdf
de Broglie L. Wave mechanics and the atomic structure of matter and radiation. J Phys Radium. 1927;8:225-241. Available from: https://ui.adsabs.harvard.edu/link_gateway/1927JPhRa...8..225D/doi:10.1051/jphysrad:0192700805022500
Biggs HF. Wave mechanics: An introductory sketch. London: Oxford University Press; 1927. Available from: https://catalog.hathitrust.org/Record/001479158
Davisson CJ, Germer LH. Reflection of electrons by a crystal of nickel. Proceedings of the National Academy of Sciences USA. 1928;14:317-322. Available from: http://rsefalicante.umh.es/TemasLuz/Davidson.pdf
Ketterle W. When atoms behave as waves: Bose-Einstein condensation and the atom laser. Rev Mod Phys. 2002;74:1131-1151. Available from: https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.74.1131
Schrödinger E. The present situation in quantum mechanics. Natural Sciences. 1935;23:807-812. Available from: https://homepages.dias.ie/dorlas/Papers/QMSTATUS.pdf
Vaidman L. Quantum theory and determinism. Quantum Studies: Mathematics and Foundations. 2014;1:5-38. Available from: https://link.springer.com/article/10.1007/s40509-014-0008-4
Gudder SP. Quantum probability. San Diego: Academic Press; 1988. Available from: https://api.pageplace.de/preview/DT0400.9780080918488_A23591761/preview-9780080918488_A23591761.pdf
Lazarou D. Interpretation of quantum theory: An overview. arXiv. 2007;0712.3466. Available from: https://doi.org/10.48550/arXiv.0712.3466
Heisenberg W. Physics and philosophy: The worldview of modern physics. Berlin: Ullstein Taschenbuch Verlag; 1959. Available from: https://www.abebooks.com/first-edition/Physik-Philosophie-Heisenberg-Werner-Stuttgart-Hirzel/32229036002/bd
Einstein A. The foundation of the general theory of relativity. Annals of Physics. 1916;354(7):769-822. (Original citation: Annalen der Physik. 49(7):769-822).
Friedman M. Foundations of space-time theories. Princeton (NJ): Princeton University Press; 1983. Available from: https://pages.jh.edu/rrynasi1/spacetime/eprints/Friedman1983FoundationsOfSpace-TimeTheories.RelativisticPhysics+PhilosophyOfScience.pdf
Dicke RH. Mach’s principle and equivalence. In: Moller C, editor. Evidence for gravitational theories: proceedings of course 20 of the International School of Physics “Enrico Fermi”. New York (NY): Academic Press; 1962.
Connel SH, Tegen R. Proceedings of the International Conference on Fundamental and Applied Aspects of Modern Physics 2000. Singapore: World Scientific; 2001. Book 636 p. ISBN: 978-981-02-4589-4. Available from: https://doi.org/10.1142/4671
Chabot H, Roux S. Mathematization as a problem. Paris: Archives Contemporaines; 2011. 216 p. ISBN: 2813056600. Available from: https://www.researchgate.net/publication/258050091_La_Mathematisation_comme_probleme
Born M, Heisenberg W, Jordan P. On quantum mechanics II. Zeitschrift für Physik. 1926;35(8-9):557-615. English translation in: van der Waerden BL, editor. Sources of quantum mechanics. New York (NY): Dover Publications; 1968.
Selleri F. Quantum paradoxes and physical reality. Dordrecht: D. Reidel Publishing Company; 1983. Hardcover ed. 1990; 384 p. Available from: https://www.amazon.com/Quantum-Paradoxes-Physical-Fundamental-Theories/dp/0792302532
Bohr N. Quantum mechanics and physical realities. Nature. 1935;136(65):65. Available from: https://journals.aps.org/pr/abstract/10.1103/PhysRev.48.696
Einstein A, Podolsky B, Rosen N. Can quantum-mechanical description of physical reality be considered complete? Physical Review. 1935;47:777-78. Available from: https://journals.aps.org/pr/abstract/10.1103/PhysRev.47.777
Einstein A, Rosen N. The particle problem in the general theory of relativity. Physical Review. 1935;48:73-77. Available from: https://doi.org/10.1103/PhysRev.48.73
Will CM. The confrontation between general relativity and experiment. Living Reviews in Relativity. 2006;17:1-107. Available from: https://link.springer.com/article/10.12942/lrr-2014-4
von Laue M. Two objections against the theory of relativity and their refutation. Physikalische Zeitschrift. 1911;13:118-120.
Langevin P. The evolution of space and time. Scientia. 1911;10:31-54. Available from: https://www.scribd.com/document/390561727/1911-Paul-Langevin-Twin-Paradox-Paper-pdf
Darwin C. The clock paradox in relativity. Nature. 1999;180:976. Available from: https://en.wikisource.org/wiki/The_clock_problem_(clock_paradox)_in_relativity
de Broglie L. The reinterpretation of wave mechanics. Foundations of Physics. 1970;1:5-15. Available from: https://link.springer.com/article/10.1007/BF00708650
Bennewitz K, Simon F. On the question of zero-point energy. Journal of Physics. 1923;16:183-199. Available from: https://en.wikipedia.org/wiki/Zero-point_energy
Milonni PW, Eberlein C. The quantum vacuum: an introduction to quantum electrodynamics. American Journal of Physics. 1994;62(12):1154. Available from: https://doi.org/10.1119/1.17618
Hobson A. There are no particles, there are only fields. American Journal of Physics. 2013;81:211-223. Available from: https://doi.org/10.1119/1.4789885
Heisenberg W. The actual content of the quantum-theoretical kinematics and mechanics. Zeitschrift für Physik. 1927;43:172-198. Available from: https://scispace.com/pdf/the-actual-content-of-quantum-theoretical-kinematics-and-2mmbwzqify.pdf
Gribbin J. In Search of Schrödinger’s Cat: Quantum Physics and Reality. Random House Publishing Group; 2011;234. Available from: https://www.scribd.com/document/500516247/Schrodinger-s-cat
Feynman R. QED: The Strange Theory of Light and Matter. Princeton University Press; 1985. Available from: https://en.wikipedia.org/wiki/QED:_The_Strange_Theory_of_Light_and_Matter
de Broglie L. La physique quantique restera-t-elle indéterministe. Rev Hist Sci. 1952;5:289. Available from: https://www.persee.fr/doc/rhs_0048-7996_1952_num_5_4_2967
Holton RGJ. Comprendre la Physique. Presse Polytechniques et Universitaire Cassidy Romandes; 2014. ISBN: 978-2-88915-D83. Available from: https://www.amazon.in/Comprendre-la-physique/dp/2889150836
Bohm D. A suggested interpretation of the quantum theory in terms of hidden variables. Phys Rev. 1952;85:166. Available from: https://doi.org/10.1103/PhysRev.85.166
Laloe F. A model of quantum collapse induced by gravity. ArXiv preprint arXiv:1905.12047. 2020;1-14. Available from: https://doi.org/10.1140/epjd/e2019-100434-1
Cassidy D. Quantum Mechanics 1925–1927: Triumph of the Copenhagen Interpretation. Werner Heisenberg. American Institute of Physics; 2008.
Young T. On the theory of light and colours. Philos Trans R Soc Lond. 1802;92:12-48. Available from: https://doi.org/10.1098/rstl.1802.0004
Merli PG, Missiroli GF, Pozzi G. On the statistical aspect of electron interference phenomena. Am J Phys. 1976;44:306-307. Available from: https://doi.org/10.1119/1.10184
Scott TC, Andrae D. Quantum non-locality and conservation of momentum. Phys Essays. 2015;28:374-385. Available from: https://doi.org/10.4006/0836-1398-28.3.374
Fraboni S, Gabrielli A, Gazzadi GC, Giorgio F, Matteucci G, Pozzi G, et al. The Young-Feynman two slits experiment with single electrons: Build-up of the interference pattern, arrival time distribution using fast read-out pixel detector. Ultramicroscopy. 2012;116:73-76. Available from: https://doi.org/10.1016/j.ultramic.2012.03.017
Suarez-Forero DG, Ardizzone V, Covreda-Silva SF, Reindl M, Fieramosca A, Polimeno L, et al. Quantum hydrodynamics of a single particle. Light: Sci Appl. 2020;9:85:1–7. Available from: https://doi.org/10.1038/s41377-020-0324-x
Aspect A. Proposed experiment to test the non-separability of quantum mechanics. Phys Rev D. 1976;14:1944. Available from: https://journals.aps.org/prd/abstract/10.1103/PhysRevD.14.1944
Grangier P, Roger G, Aspect A. Experimental evidence for a photon anti-correlation effect on a beam splitter: A new light on single-photon interferences. Europhys Lett. 1986;1:173–179. Available from: https://www.cpt.univ-mrs.fr/~verga/pdfs/Grangier-1986.pdf
Liu AY, Cohen ML. Structural properties and electronic structure of low-compressibility materials: β-Si₃N₄ and hypothetical β-C₃N₄. Phys Rev B. 1990;41:10727. Available from: https://doi.org/10.1103/PhysRevB.41.10727
Schriver DF, Atkins PW, Langford CH. Inorganic Chemistry. Oxford: Oxford University Press; 1990. ISBN: 0-19-855396-X. Available from: https://search.worldcat.org/title/30361333
Neuville S, Mathews A. A perspective on the optimization of hard carbon and related materials for engineering applications. Thin Solid Films. 2007;515:6619–6653. Available from: https://doi.org/10.1016/j.tsf.2007.02.011
Kittel C. Introduction to Solid-State Physics. 8th ed. Hoboken, NJ: John Wiley & Sons; 2005. ISBN: 978-0471415268. Available from: https://www.wiley.com/en-us/Introduction+to+Solid+State+Physics%2C+8th+Edition-p-9780471415268
Atkins PW. Eléments de Chimie Physique. Bruxelles: De Boeck University Paris; 1998. ISBN: 2744500100. Available from: https://ulysse.univ-lorraine.fr/discovery/fulldisplay?docid=alma991001254469705596&context=L&vid=33UDL_INST:UDL&lang=fr&adaptor=Local%20Search%20Engine
Bardeen J, Cooper LN, Schrieffer JR. Theory of superconductivity. Phys Rev. 1957;108:1175–1204. Available from: https://doi.org/10.1103/PhysRev.108.1175
Cohen M. BCS 50 years. In: Cooper LN, Feldmann D, editors. World Scientific; 2011;375–389. Available from: https://books.google.co.in/books/about/Bcs_50_Years.html?id=spnFCgAAQBAJ&redir_esc=y
Drozdov AP, Eremets MI, Troyan IA, Ksenofontov V, Shylin SI. Conventional superconductivity at 203 K at high pressures in the sulfur hydride system. Nature. 2015;525:73–76. Available from: https://doi.org/10.1038/nature14964
Drozdov AP, Kong PP, Minkov VS, Besedin SP, Kuzovnikov MA, Mozaffari S, et al. Superconductivity at 250 K in lanthanum hydride under high pressures. Nature. 2019;569(7787):528–531. Available from: https://www.nature.com/articles/s41586-019-1201-8
Kuzmann E, Homonnay Z, Nagy S, Gal M, Halasz I, Pöppl I, Vertes A. Mössbauer studies on high temperature superconductors. Hyperfine Interact. 1994;8(1–4):143. Available from: https://link.springer.com/article/10.1007/BF02060655
Massida S. From BCS to modern electronic theory. Superconductivity report. University of Calgary; 2015. Available from: https://elk.sourceforge.io/CECAM/Massidda-superconductivity.pdf
Holmvall P, Fogelström M, Löfwander T, Vorontsov AB. Phase crystals. Phys Rev Res. 2020;2:013104. Available from: https://doi.org/10.1103/PhysRevResearch.2.013104
Dresselhaus MS, Eklund PC. Phonons in carbon nanotubes. Adv Phys. 2000;49:705–814. Available from: https://ui.adsabs.harvard.edu/link_gateway/2000AdPhy..49..705D/doi:10.1080/000187300413184
Maciel ID, Anderson N, Pimenta M, Hartschuh A, Qian H, Terrones M, et al. Electron and phonon renormalization near charged defects in nanotubes. Nat Mater. 2008;11:878–883. Available from: https://doi.org/10.1038/nmat2296
Martins JL. Buckyballs electronic structure and superconductivity. Europhys News. 1992;23(2):31–33. Available from: https://www.europhysicsnews.org/articles/epn/pdf/1992/02/epn19922302p31.pdf
Chang CT, Sethna JP, Pasupathy AN, Park J, Ralph DC, McEuen PL. Phonons and conduction in molecular quantum dots: density functional calculations of Franck-Condon emission rates for fullerenes in external fields.. 2006. Available from: https://doi.org/10.48550/arXiv.cond-mat/0605671
Hirsch JE. BCS theory of superconductivity: it is time to question its validity. Phys Scr. 2009;80:035702. Available from: https://doi.org/10.1088/0031-8949/80/03/035702?urlappend=%3Futm_source%3Dresearchgate
Neuville S. Superconductivity described with electron-phonon synchronic coupling. Mater Today Proc. 2018;5(5):13827–13836. Available from: https://doi.org/10.1016/j.matpr.2018.02.024
Neuville S. Carbon structure analysis with differentiated Raman spectroscopy. Lambert Academic Publishing; 2014. ISBN: 978-3-659-48909-9. Available from: https://www.amazon.in/Carbon-Structure-Analysis-Differentiated-Spectroscopy/dp/3659489093
Malard LM, Pimenta MA, Dresselhaus G, Dresselhaus MS. Raman spectroscopy in graphene. Phys Rep. 2009;473:51–87. Available from: https://doi.org/10.1016/j.physrep.2009.02.003
Spear KE, Phelps AW, White WB, Phelps A. Diamond prototypes and their vibrational spectra. J Mater Res. 1990;5:2277–2285. Available from: https://link.springer.com/article/10.1557/JMR.1990.2277
Huong PV. Structural studies of diamond films and ultrahard materials by Raman spectroscopy. Diamond Relat Mater. 1991;1:33. Available from: https://doi.org/10.1016/0925-9635(91)90009-Y
Watanabe E, Conwill A, Tsuya D, Koidl Y. Low contact resistance metals for graphene-based devices. Diamond Relat Mater. 2012;24:171. Available from: https://link.springer.com/article/10.1557/opl.2013.862
Dresselhaus MS, Jorio A, Filho AGS, Saito R. Defect characterization in graphene and carbon nanotubes using Raman spectroscopy. Philos Trans R Soc A Math Phys Eng Sci. 2010;368:5355–5377. Available from: https://doi.org/10.1098/rsta.2010.0213
Anders S, Ager JW III, Pharr GM, Tsui TY, Brown IG. Heat treatment of cathodic arc deposited amorphous hard carbon films. Thin Solid Films. 1997;308–309:186. Available from: https://www.sciencedirect.com/journal/thin-solid-films/vol/308/suppl/C
McNamara KM, Gleason KK, Vestyck GJ, Butler JE. Evaluation of diamond films by nuclear magnetic resonance and Raman spectroscopy. Diamond Relat Mater. 1992;1(12):1145–1155. Available from: https://doi.org/10.1016/0925-9635(92)90088-6
Huong PV, Marcus B, Mermoux M, Veirs DK, Rosenblatt GM. Diamond-like films prepared by microwave plasma assisted chemical vapour deposition and by magnetron sputtering. Diamond Relat Mater. 1991;1(8):869–873. Available from: https://doi.org/10.1016/0925-9635(92)90127-A
Huong PV. Structural studies of diamond films and ultrahard materials by Raman and micro-Raman spectroscopies. Diamond Relat Mater. 1991;1(1):33–41. Available from: https://doi.org/10.1016/0925-9635(91)90009-Y
Wagner J, Ramsteiner M, Wild C, Koidl P. EMRS Meeting XVII. In: Koidl P, Oelhafen P, editors. Les Editions de la Physique; 1987;351.
Prawer S, Ninio F, Blanchonette I. Raman spectroscopic investigation of ion-beam-irradiated glassy carbon. J Appl Phys. 1990;68:2361–2366. Available from: https://doi.org/10.1063/1.346547
Badzian AP, Bachmann PK, Hartnett T, Badzian T, Messier R. EMRS Meeting XVII. In: Koidl P, Oelhafen P, editors. Les Editions de la Physique; 1987. p. 63.
You YM, Ni ZH, Yu T, She ZX. Edge chirality determination of graphene by micro Raman spectroscopy. Appl Phys Lett. 2008;93:163112. Available from: https://doi.org/10.1063/1.3005599
Xu Y, Chen X, Wang L, Bei K, Wang J, Chou IM, et al. Progress of Raman spectroscopic investigations on the structure and properties of coal. J Raman Spectrosc. 2020;51(9):1874–1884. Available from: https://doi.org/10.1002/jrs.5826?urlappend=%3Futm_source%3Dresearchgate.net%26medium%3Darticle
Neuville S. Quantum electronic mechanisms of atomic rearrangements during growth of hard carbon films. Surf Coat Technol. 2011;206:703–726. Available from: https://doi.org/10.1016/j.surfcoat.2011.07.055
Neuville S. Selective carbon material engineering for improved MEMS and NEMS. Micromachines. 2019;10:539–581. Available from: https://doi.org/10.3390/mi10080539
Hecht E. Optics. Addison-Wesley; 2002. Available from: https://books.google.com.co/books?id=T3ofAQAAMAAJ
Remoissenet M. Waves Called Solitons: Concepts and Experiments. Springer; 1996. Available from: https://en.pdfdrive.to/dl/waves-called-solitons-concepts-and-experiments-0
Dvornikov M. Axially and spherically symmetric solitons in warm plasma. J Plasma Phys. 2011;77:749-764. Available from: https://doi.org/10.1017/S002237781100016X
Weiner J, Nunes F. Light-Matter Interaction: Physics and Engineering at the Nanoscale. OUP Oxford; 2013. Available from: https://doi.org/10.1093/acprof:oso/9780198796664.001.0001
de Santis L. Single photon generation and manipulation with semiconductor quantum dot devices [dissertation]. Université Paris-Saclay; 2018. Available from: https://theses.hal.science/tel-01783546v1/file/73383_DE_SANTIS_2018_archivage.pdf
Bacon D. Detection of weak gravitational lensing by large-scale structure. MNRAS. 2000;318:625-640. Available from: https://doi.org/10.1046/j.1365-8711.2000.03851.x
Jégat A. Gravitational deflection of light in a Platonic quadri-dimensional space. Hal-02444592. 2020. Available from: https://hal.science/hal-02444592v1
Collett E, Oldham LJ, Smith RJ, Auger MW, Westfall KB, Kyle B, et al., Bacon D, Nichol RC, Masters KL, Koyama K, van den Bosch R. A precise extragalactic test of General Relativity. Science. 2018;360(6395):1342-1346. Available from: https://doi.org/10.1126/science.aao2469
Pound RV, Rebka GA. Apparent Weight of Photons. Phys Rev Lett. 1960;4:337-341. Available from: https://doi.org/10.1103/PhysRevLett.4.337
Baxtera C, Loudon R. Tutorial review. Radiation pressure and the photon momentum in dielectrics. J Mod Opt. 2010;57:830-842. Available from: https://doi.org/10.1080/09500340.2010.487948
Doppler C. About the coloured light of the binary stars and some other stars of the heavens. Abhandlungen der Königl Böhm Gesellschaft der Wissenschaften. 1842;2(5):465-482. Available from: https://en.wikipedia.org/wiki/On_the_coloured_light_of_the_binary_stars_and_some_other_stars_of_the_heavens
Buys-Ballot CHD. Acoustic experiments on the Dutch railway, with occasional remarks on Prof. Doppler's theory. Ann Phys Chem. 1845;142(11):321-351. Available from: https://ui.adsabs.harvard.edu/link_gateway/1845AnP...142..321B/doi:10.1002/andp.18451421102
Fizeau H. Effects of motion on the tone of sound vibrations and on the wavelength of light rays. Ann Chim Phys. 1870;19:211-221. Available from: https://search.worldcat.org/cs/title/1288335725
Houdas Y. Doppler, Buys-Ballot, Fizeau: Historical note on the discovery of the Doppler effect. Ann Cardiol. 1991;40:209-213. Available from: https://pubmed.ncbi.nlm.nih.gov/2053764/
Stokes GG. On the theories of the internal friction of fluids in motion and of the equilibrium and motion of elastic solids. Trans Cambridge Philos Soc. 1845;8:287-305. Available from: https://www.scirp.org/reference/referencespapers?referenceid=2203553
Trachenko K, Monserrat B, Pickard CJ, Brazhkin VV. Speed of sound from fundamental physical constants. Sci Adv. 2020;6:eabc8662. Available from: https://doi.org/10.1126/sciadv.abc8662
Kunisch K, Volkwein S. Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics. SIAM J Numer Anal. 2002;40:492-515. Available from: https://2024.sci-hub.se/1849/adeb98405aaaafd1dbc94515ce73a5c1/kunisch2002.pdf
Bardos C, Titi ES. Euler equations of incompressible ideal fluids. Russ Math Surv. 2007;62(3):409-451. Available from: https://doi.org/10.1070/RM2007v062n03ABEH004410
Anderson JD. Governing Equations of Fluid Dynamics. In: Wendt JF, editor. Computational Fluid Dynamics: An Introduction. Berlin: Springer; 2009. Chapter II. Available from: https://link.springer.com/book/10.1007/978-3-540-85056-4
Sobieski W. The basic equations of fluid mechanics in form characteristic of the finite volume method. Technical Sciences. 2011;14:299-313. Available from: https://uwm.edu.pl/wnt/technicalsc/tech_14_2/B14.PDF
Panofsky WKH, Phillips M. Classical Electricity and Magnetism. Addison-Wesley; 1962. Available from: https://www.amazon.in/Classical-Electricity-Magnetism-World-Student/dp/0201057042
Edmonds AR. Angular Momentum in Quantum Mechanics. Princeton University Press; 1957. Available from: https://www.scribd.com/document/460461672/Angular-momentum-Wikipedia-pdf
Kündig W. Measurement of the Transverse Doppler Effect in an Accelerated System. Phys Rev. 1963;129:2371-2375. Available from: https://doi.org/10.1103/PhysRev.129.2371
Günther K, Khan I, Elser D, Stiller B, Bayraktar O. Quantum-limited measurements of optical signals from a geostationary satellite. Optica. 2017;4(6):611-616. Available from: https://doi.org/10.1364/OPTICA.4.000611
Champeney DC, Moon PB. Absence of Doppler Shift for Gamma Ray Source and Detector on Same Circular Orbit. Proc Phys Soc. 1961;77:350-352. Available from: https://iopscience.iop.org/article/10.1088/0370-1328/77/2/318
Einstein A. Aether and Theory of Relativity. Berlin: Springer; 1920. Available from: https://link.springer.com/chapter/10.1007/978-1-4020-4000-9_34
Le Roux Y. The absolute simultaneity of Lorentz’s aether theory [in French]. HAL Open Archive; 2019. Available from: https://hal.science/hal-02297285/
Bednorz A. Relativistic invariance of the vacuum. Eur Phys J C. 2013;73(12):1-14. Available from: https://link.springer.com/article/10.1140/epjc/s10052-013-2654-9
Kennedy R, Thorndike E. No light speed anisotropy in vacuum. Phys Rev. 1932;42:400-418. Available from: https://journals.aps.org/pr/abstract/10.1103/PhysRev.42.400
Scully MO, Zubairy MS. Quantum Optics. Cambridge University Press; 1997. Available from: https://api.pageplace.de/preview/DT0400.9781139632331_A24435686/preview-9781139632331_A24435686.pdf
Sainadh US, Xu H, Wang XS, Atia-Tul-Noor A, Wallace WC, Douguet N, et al. Attosecond angular streaking and tunneling time in atomic H. Nature. 2019;568(7577):75-77. Available from: https://doi.org/10.1038/s41586-019-1028-3
Ellis JR, Farakos K, Mavromatos NE, Mitsou VA, Nanopoulos DV. Astrophysical probes of the constancy of the velocity of light. Astrophys J. 2000;535:139-151. Available from: https://doi.org/10.1086/308825
Schaefer BE. Severe limits on variation of the speed of light with frequency. Phys Rev Lett. 1999;82:4964. Available from: https://doi.org/10.1103/PhysRevLett.82.4964
Robin S. Cherenkov Effect [in French]. J Phys Radium. 1950;11(5):17-23. Available from: https://doi.org/10.1051/jphysrad:0195000110501700
Visser M, Bassett B, Liberati SS. Superluminal censorship. Nucl Phys B Proc Suppl. 2000;88:267-270. Available from: https://doi.org/10.1016/S0920-5632(00)00782-9
Chase IP. Apparent superluminal velocity of galaxies. Usenet Physics FAQ, University of California, Riverside; 2009. Available from: https://www.desy.de/user/projects/Physics/Relativity/SpeedOfLight/Superluminal/superluminal.html
Schach P, Giese E. A unified theory of tunneling times promoted by Ramsey clocks. Sci Adv Phys. 2024;10(6078):1-8. Available from: https://doi.org/10.1126/sciadv.adl6078
James MB, Griffiths DJ. Why the speed of light is reduced in a transparent medium. Am J Phys. 1992;60:309-313. Available from: https://www.atmosp.physics.utoronto.ca/~dbj/PHY353/papers/James_and_Griffiths1992.pdf
Tarrach R. Thermal effects on the speed of light. Phys Lett B. 1983;133:259-261. Available from: https://doi.org/10.1016/0370-2693(83)90573-7
Gianfrani L. Linking the thermodynamic temperature to an optical frequency: recent advances in Doppler-broadening thermometry. Phil Trans R Soc A. 2016;374:20150047. Available from: https://doi.org/10.1098/rsta.2015.0047
Courant R, Friedrichs KO. Supersonic Flow and Shock Waves. 5th ed. New York: Springer-Verlag; 1999. 464 p. Available from: https://books.google.co.in/books/about/Supersonic_Flow_and_Shock_Waves.html?id=Qsxec0QfYw8C&redir_esc=y
Schmittberger BL. A review of contemporary atomic frequency standards. ArXiv. 2020;2004.09987:1-13. Available from: https://doi.org/10.48550/arXiv.2004.09987
Schroeder D. An Introduction to Quantum Field Theory. Western Press; 1995. Available from: https://www.physicsbook.ir/book/An%20Introduction%20To%20Quantum%20Field%20Theory%20-%20M.%20Peskin,%20D.%20Schroeder%20(Perseus,%201995).pdf
Yam P. Exploited zero point energy. Sci Am. 1997;227:82-85. Available from: https://www.scientificamerican.com/article/exploiting-zero-point-energy/
Casimir HBG. On the attraction between two perfectly conducting plates. Kon Ned Akad Wetensch Proc. 1948;51:793-795. Available from: https://inspirehep.net/literature/24990
Jaffe RL. Casimir effect and quantum vacuum. Phys Rev D. 2005;72:021301. Available from: https://doi.org/10.1103/PhysRevD.72.021301
Lamoreaux SK. Casimir forces: still surprising after 60 years. Phys Today. 2007;60:40-45. Available from: https://www.rug.nl/staff/g.palasantzas/physics_today_-_s._lamoreaux.pdf
Scharnhorst K. On propagation of light in the vacuum between plates. Phys Lett B. 1990;236:354-359. Available from: https://doi.org/10.1016/0370-2693(90)90997-K
Barton G. Faster than cc light between parallel mirrors: the Scharnhorst effect rederived. Phys Lett B. 1990;237:559-562. Available from: https://doi.org/10.1016/0370-2693(90)91224-Y
Scharnhorst K. The velocities of light in modified QED vacua. Ann Phys. 1998;7:700-709. Available from: https://doi.org/10.48550/arXiv.hep-th/9810221
Penrose R. Fashion, Faith and Fantasy. Princeton: Princeton University Press; 2016. Available from: https://press.princeton.edu/books/hardcover/9780691119793/fashion-faith-and-fantasy-in-the-new-physics-of-the-universe?srsltid=AfmBOooi7WlW5uoHzE6_AOBBwMk2NApfQgi8t8HnP76e-3TDcM24d7zN
Cozzella G, Landulfo AGS, Matsas GEA, Vanzella DAT. Proposal for observing the Unruh effect by classical electrodynamics. Phys Rev Lett. 2016;118:161102. Available from: https://inspirehep.net/literature/1508848
Lambrecht A. Observing mechanical dissipation in the quantum vacuum: an experimental challenge. In: Figger H, Zimmermann C, Meschede D, editors. Laser Physics at the Limits. Berlin, Heidelberg: Springer; 2002. p. 197–207. Available from: https://link.springer.com/chapter/10.1007/978-3-662-04897-9_20
Fong KY, Li HK, Zhao R, Yang S, Wang Y, Zhang X. Phonon heat transfer across a vacuum through quantum fluctuation. Nature. 2019;576:242–247. Available from: https://doi.org/10.1038/s41586-019-1800-4
Fiscaletti D, Sorli A. Quantum vacuum energy density and unifying perspectives between gravity and quantum behaviour of matter. Ann Fond Louis de Broglie. 2017;42:251. Available from: https://fondationlouisdebroglie.org/AFLB-422/aflb422m853.pdf
Kiefer C. Quantum gravity. Oxford: Oxford University Press; 2012. (International series of monographs on physics; 12:393). Available from: https://www.amazon.in/Quantum-Gravity-International-Monographs-Physics/dp/0199585202
Annila A. The substance of gravity. Phys Essays. 2015;28:208–218. Available from: https://www.mv.helsinki.fi/home/aannila/arto/substance.pdf
Maggiore M. Gravitational waves: theory and experiments. Oxford: Oxford University Press; 2007. Available from: https://libraryopac.iitj.ac.in/cgi-bin/koha/opac-detail.pl?biblionumber=12415
Will CM. Theory and experiment in gravitational physics. Cambridge: Cambridge University Press & Assessment; 1993. ISBN: 978-1-107-11744-0. Available from: https://assets.cambridge.org/97811071/17440/frontmatter/9781107117440_frontmatter.pdf
Ashtekar A, Stachel J. Conceptual problems of quantum gravity. Boston (MA): Springer; 1991. ISBN: 9780817634438. Available from: https://www.abebooks.co.uk/9780817634438/Conceptual-Problems-Quantum-Gravity-Einstein-0817634436/plp
Abbott BP. Observation of gravitational waves from a binary black hole merger. Phys Rev Lett. 2016;116. Available from: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.061102
Will CM. Gravitational radiation from binary systems in alternative metric theories of gravity: dipole radiation and the binary pulsar. Astrophys J. 1977;214:826–839. Available from: https://adsabs.harvard.edu/full/1977ApJ...214..826W
Nordtvedt K. Equivalence principle for massive bodies. I. Phenomenology. Phys Rev. 1968;169:1014–1016. Available from: https://journals.aps.org/pr/abstract/10.1103/PhysRev.169.1014
Tang J, Hu ZB. Analysis of single-photon self-interference in Young’s double-slit experiments. Results Opt. 2022;9(100281):1–6. Available from: https://ui.adsabs.harvard.edu/link_gateway/2022ResOp...900281T/doi:10.1016/j.rio.2022.100281
Tittel W, Brendel J, Zbinden H, Gisin N. Violation of Bell inequalities by photons more than 10 km apart. Phys Rev Lett. 1998;81:3563–3566. Available from: https://doi.org/10.1103/PhysRevLett.81.3563
Hensen B, Bernien H, Dréau AE, Reiserer A, Kalb N, Blok MS, et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometers. Nat Sci Rep. 2016;526(30289):682–686. Available from: https://www.nature.com/articles/srep30289
Mermin ND. Hidden variables and the two theorems of John Bell. Rev Mod Phys. 1993;65:803–815. Available from: https://doi.org/10.1103/RevModPhys.65.803
Aspect A. Viewpoint: closing the door on Einstein and Bohr’s quantum debate. Phys. 2015;8:123. Available from: https://doi.org/10.1103/PHYSICS.8.123
Neuville S. An approach for unity field theory with new quantum vacuum energy aether concept. J Math Comput Appl. 2022;1(3):3–14. Available from: https://doi.org/10.47363/JMCA/2022(1)106
Wu JZ, Ma HY, Zhou MD. Vorticity and vortex dynamics. Berlin: Springer-Verlag; 2006. Available from: https://link.springer.com/book/10.1007/978-3-540-29028-5
Purcell EM, Morin DJ. Electricity and magnetism. 3rd ed. New York: Cambridge University Press; 2013. Available from: https://www.amazon.in/Electricity-Magnetism-Edward-M-Purcell/dp/1107014026
Cen J, Yuan P, Xue S. Observation of the optical and spectral characteristics of ball lightning. Phys Rev Lett. 2014;112:035001. Available from: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.035001
Dvornikov M. Quantum exchange interaction of spherically symmetric plasmoids. J Atmos Sol Terr Phys. 2012;89:62–66. Available from: https://doi.org/10.1016/j.jastp.2012.08.005
Stark J. Elementary quantum of energy, model of negative and positive electricity. Phys Mag. 1907;24:881. Available from: https://www.onlinescientificresearch.com/articles/an-approach-for-unity-field-theory-with-new-quantumvacuum-energy-aether-concept.pdf
Kane GL. Modern elementary particle physics. Reading (MA): Perseus Books; 1987. ISBN: 978-0-201-11749-3. Available from: https://books.google.co.in/books/about/Modern_Elementary_Particle_Physics.html?id=JvnuAAAAMAAJ&redir_esc=y
Krane KS. Introductory nuclear physics. New York: John Wiley & Sons; 1988. Available from: https://www.scirp.org/reference/referencespapers?referenceid=1325786
Neuville S. New application perspective for tetrahedral amorphous carbon coatings. QScience Connect. 2014;1(8):1–28. Available from: https://doi.org/10.5339/connect.2014.8
Neuville S. Perspective on low energy Bethe nuclear fusion reactor with quantum electronic carbon rearrangement. Condens Mater Nucl Sci. 2017;22:1–26. Available from: https://doi.org/10.70923/001c.72429
Bibring JP, Rosenbauer H, Boehnhardt H, Ulamec S, Biele J, Espinasse S, et al. The Rosetta Lander (Philae) investigations. Space Sci Rev. 2007;128:205–220. Available from: https://link.springer.com/article/10.1007/s11214-006-9138-2
Neuville S. Prebiotic mechanisms of life appearance near deep sea vents with early Earth left-handed amino acids being adsorbed on SWCNT. Q Phys Rev. 2018;4(2):1–36. Available from: https://esmed.org/MRA/qpr/article/view/1766
Ramm M. Quantum correlation and energy transport in trapped ions [thesis]. Berkeley (CA): University of California; 2014. Available from: https://ions.berkeley.edu/publications/ramm-thesis.pdf
Monroe C, Meekhof D, King B, Itano W, Wineland D. Demonstration of a fundamental logic gate. Phys Rev Lett. 1995;75:4714–4717. Available from: https://doi.org/10.1103/PhysRevLett.75.4714
Eddington A. The expanding universe: astronomy’s “great debate” 1900–1931. Cambridge: University of Cambridge Press; 1989. ISBN: 0-521-34976. Available from: https://www.amazon.in/Expanding-Universe-Astronomys-1900-1931-Cambridge-University-ebook/dp/B098LV49F4
Dam L, Bonvin C. Non-linear redshift-space distortions on the full sky. Phys Rev D. 2023;108. Available from: https://doi.org/10.1103/PhysRevD.108.103505
Shapiro SL, Teukolsky SA. Black holes, white dwarfs, and neutron stars: the physics of compact objects. New York: John Wiley & Sons; 1983. p. 645. Available from: https://ui.adsabs.harvard.edu/link_gateway/1983bhwd.book.....S/doi:10.1002/9783527617661
Unruh WG. Notes on black-hole evaporation. Phys Rev D. 1976;14:870–892. Available from: https://doi.org/10.1103/PhysRevD.14.870
Chandrasekhar S. Selected papers. Vol. 6. The mathematical theory of black holes and of colliding plane waves. Chicago: University of Chicago Press; 1991. ISBN: 9780226101019. Available from: https://www.amazon.in/Selected-Papers-Paper-Vol/dp/0226101010
Hawking SW. Particle creation by black holes. Commun Math Phys. 1975;43:199–220. Available from: https://projecteuclid.org/journals/communications-in-mathematical-physics/volume-43/issue-3/Particle-creation-by-black-holes/cmp/1103899181.pdf