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a dizygotic twin pregnancy, which presented preeclampsia, 
sudden blurred vision (with normal retinal angiography). 
Caesarean section was indicated at week 35. The female 
twin required neonatal reanimation due to sudden death 
and a sickle cell trait was identiϐied in the neonatal screening 
followed by electrophoresis which showed presence of HbS in 
44% (Figure 1A). 

Family B. A 24-year-old male, who suffered anemia since 
he was born and received several blood transfusions in the 
ϐirst month and then at two months of life. He was recorded 
with low hemoglobin and hematocrit counts when he lived at 
sea level, and showed a mild improvement when he returned 
to Bogota. He presents an acute disease with hemolysis, 
jaundice, abdominal pain and hepatosplenomegaly. 
Hemoglobin count under 10 mg/dl was recorded about ten 
times in twenty years. At the age of 19, a cholecystectomy was 
performed after cholelithiasis. His father is 61-year-old, with 
ancestry from Perpignan (France) and his mother 53-year-old 
was identiϐied as a carrier of the sickle cell trait. They were 
non-consanguineous and healthy as well as his sister with 21 
years (Figure 1B). A maternal ϐirst cousin has sickle cell trait.

Both families received Whole Exome Sequencing (WES) 
followed by Sanger sequencing analysis for HBB, HBA, PKLR 
and SPTA1 genes. Once the mutations were identiϐied in both 
families, classical laboratory tests were done to conϐirm the 

Sickle Cell Disease (SCD) and its forms are the most common 
inherited blood disorders worldwide [1] and has a broad 
phenotypic variability among individuals regarding modiϐier 
genes and genetic mutations which change the severity 
spectrum [2]. Sickle Cell Trait (SCT) is found widespread in 
human populations including Colombia, which has received 
migrants from Europe, the Middle East, and Africa over the 
past ϐive centuries, including recent decades [3]. 

Genetic tests for inherited anemias are performed 
on individual genes to conϐirm previous biochemical or 
electrophoretic ϐindings [4]. However, two SCT cases came 
to our attention due to their symptoms, clinical severity, and 
frequency and intensity of acute crises, but the diagnosis was 
clariϐied only after Whole Exome Sequencing (WES) became 
available that could clarify the diagnosis and the variability in 
the phenotype explained. 

Family A. A 37-year-old female with chronic abdominal 
pain since childhood, asthenia, and adynamia, with joint pain, 
peripheral edema, which limits daily activity. She worked in 
Bogota (altitude 2.620 meters a.s.l.) alternating with La Mesa 
(Cundinamarca) (1.200 asl), in higher altitude she noticed low 
growth in nails and hair, yellowish teeth color and xeroderma.

She had 3 pregnancies, from two different couples. During 
the ϐirst pregnancy, she experienced dyspnea and diaphoresis 
on exertion, intermittent blurred vision, macroscopic 
hematuria which persisted until 8 months after delivery, 
normocytic-normochromic anemia (hemoglobin level 7.5 gr/
dl), which did not require transfusion support. The second was 
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genetic ϐindings, blood cell count, hematocrit, peripheral 
smear blood, hemolysis proϐile, MCV, and pyruvate kinase 
activity (Table 1).

Family A. Showed the patient (III, 2), grandmother (I, 2: 
who had experienced an ischemic attack), and dizygotic twins 
(IV, 2 and IV, 3) all were SCT carriers. III, 2 and IV, 2 also have 
PKLR mutation (Figure 1A). Index case paternal family was 
originated in Italy and were presumably healthy. II, 2 suffered 
central retinal vein occlusion. 

Whole Exome Sequencing (WES) was performed in the 
index case (III, 2) revealed two mutations. First, the patient 
is a carrier of heterozygous pathogenic variant for the 
gene HBB: c.20A>T p.Glu7Val (SCT). Second, heterozygous 
pathogenic variant was identiϐied for the gene PKLR: 
c.1456C>T p.Arg486Trp which concludes the diagnosis of an 
uncommon hemolytic anemia caused by a biallelic digenic 
mutation (Figure 1A). Both ϐindings were conϐirmed by 
Sanger sequencing (Figure 1A). Then, dizygotic twins were 
sequenced, both showed as carriers of SCT (HBB: c.20A>T 
p.Glu7Val mutation) and the daughter have PKLR: c.1456C>T 
p.Arg486Trp as well as her mother, who was also affected 
(data not shown).

 Family B. Index case (II, 1) WES and Sanger sequencing 
showed two heterozygous mutations: the common mutation 
HBB c.20A>T p.Glu6Val (SCT) and SPTA1: c.83G>A p.Arg28His 
(Figure 1B).

Afterwards, blood laboratory analyses in Family A, III, 2 
and IV, 2 showed Hemoglobin electrophoresis revealed HbS 
levels of 40% and 38.6%, respectively. PKLR activity was 8.7 
and 10.1 U/g Hb (37 ºC) respectively (Table 1). Family B, II, 1 
laboratory test data showed HbS 39.9% and increased levels 
of indirect, direct and total bilirubin. Other data such as HbA 
reduction and increased HbS levels are shown in Table 1.

Gene mutations that cause hereditary anemias are 
worldwide distributed. Colombian population is mixed by 
Amerindians and diverse migrations from Europe, Africa and 
Asia. In both families, A and B, were identiϐied SCT carriers, 
but index cases and other relatives showed a clinical course of 
symptomatic critic severe anemia that worsened with time? 
Their severe symptoms were misunderstood, and it even took 
several decades to clarify clinical-laboratory incoherence, that 
suggested an additional hematologic disease. It was until WES 
was performed that causal mutations were detected using a 
multigenic panel for inherited anemias.

In Family A digenic disease was identiϐied, two members 
presented SCT and PKLR deϐiciency simultaneously (HBB: 
c.20A>T p.Glu7Val and PKLR: c.1456C>T p.Arg486Trp). The 
male dizygotic twin, who was also studied, carried only sickle 
cell trait (HBB: c.20A>T p.Glu7Val). Those ϐindings led to a 

Figure 1: Familial segregation and Sanger sequencing results for HBB, PKLR, 
and SPTA1 variants A. Pedigree and mutation profi le of Family A and Sanger 
sequencing of the index case III,2. B. Pedigree of the Family B and Sanger 
sequencing of the index case II,1.

Table 1: Relevant data from laboratory tests.

Analytics
Family A Family B

Reference values
Patient 1 Patient 2 Patient 3

Blood count
Hgb g/dl 14.9 15.4 14.7 13.6 - 17.5

PCV % 43.2 44.5 42.2 41.0 - 53.0
MCV ϐl 91 80 80 80 - 98

MCH pg  31.4 27.8 28.9 24.0 - 30.0
MCHC g/dl 34.4 34.7 34.8 32.0 - 35.0

WBC 6.5 10.2 6 4.5 - 10.0
Platelets 320 420 332 150 - 450

Haemoglobin electrophoresis
HbA% 56.5* 57.5* 56.9* 96.8 – 97.8

HbF% 0.3 0.6 0.2 Ad: < 2.0, Nb: 50.0-80.0, 
6m: 0.0-8.0

HbS% 40* 38.6* 39.9* -
HbA2% 3.2 3.3 3 2.2-3.2

Peripheral blood smear
Erythrocyte 

abnormalities Normal Normal Normal  

Bilirubin
TB mg/dl 0.83 0.82 5.12* 0.2-1.1
DB mg/dl 0.27 0.3 1.04* 0.0-0.3
IDB mg/dl 0.56 0.52 4.08* 0.0-0.9

Pyruvate kinase activity
(U/g Hb at 37°C) 8.7 10.1  - 7.4-16.4

Hgb-Hemoglobin concentration, PCV: Packed Cell Volume; MCV: Mean Cell Volume, 
MCH: Mean Cell Hemoglobin; MCHC: Mean Cell Hemoglobin Concentration; WBC: White 
Blood Cells*10⁹/l, Plts: Platelets*10⁹/l. Ad: Adults; Nb: Newborn; 6m: 6 months. TB: 
Total Bilirubin; DB: Direct Bilirubin: IDB: Indirect Bilirubin. 



Synergistic Heterozygosity in Rare Digenic Hereditary Anemias Accurately Diagnosed by whole Exome Sequencing

 www.clinmedcasereportsjournal.com 178https://doi.org/10.29328/journal.acr.1001141

conditions and the damage to red blood cell cytoskeletal 
proteins [11]. 

The presence of two pathogenic variants in both genes HBB 
and PKLR for Family A, and HBB and SPTA1 for Family B, are 
examples of combination of two different alleles in a double 
heterozygous individual, resulting in a synergistic effect with 
implications for the severity or expression of a disease, known 
as synergistic heterozygosity [12]. 

Some of classic laboratory analysis for SCT/SCD are 
sickle solubility testing, hemoglobin electrophoresis, High-
performance Liquid Chromatography (HPLC), and Isoelectric 
Focusing (IEF) may not be readily available in all clinical 
settings and health facilities. Currently, sickle solubility 
tests are limited in that since it cannot differentiate patients 
with SCT from SCD; and infants with high hemoglobin F and 
low hemoglobin S may result in false negatives, requiring 
conϐirmatory testing [13,14]. Molecular protocols for 
hemoglobinopathies are often used in the research setting 
(archived DNA samples) to identify SCT carriers and are 
also used by a limited number of laboratories to clarify SCT 
screening in rare anemia cases [15]. Recent genomic advances 
have enhanced the diagnosis of SCT, SCD, thalassemia and 
other rare anemias using WES [13], as happened in the present 
two families who received a precision diagnosis, reducing 
diagnostic delays and streamlining laboratory workϐlows. 
Molecular testing, particularly WES or anemia panels, is 
recommended, particularly WES and/or a multigenic anemia 
panel in all cases of symptomatic anemias with or without 
SCT. 
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