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Abstract

This paper investigates the role of machine learning (ML) techniques in advancing CuSCN-
based perovskite tandem solar cells (PTSCs), addressing critical challenges such as power 
conversion efϐiciency, scalability, and long-term operational stability. CuSCN is emphasized as a 
promising hole transport layer due to its affordability, thermal stability, and compatibility with 
scalable manufacturing techniques. Leveraging ML-driven frameworks , the study optimizes 
key parameters, enhances layer uniformity, reduces defect density, and reϐines interface 
engineering, achieving signiϐicant improvements compared to conventional methods . Results 
demonstrate that ML-based optimization facilitates power conversion efϐiciencies exceeding 
29% under controlled conditions while offering precise predictions of long-term performance 
and degradation mechanisms. This outcome establishes a signiϐicant benchmark for integrating 
CuSCN into PTSCs while maintaining environmental and economic sustainability. Furthermore, 
the study underscores ML’s capability in tailoring complex device architectures and minimizing 
the experimental efforts required to achieve optimal conϐigurations. The novelty of this work lies 
in proposing hybrid methodologies that integrate ML predictions with conventional fabrication 
techniques, addressing computational cost limitations that hinder widespread application. 
Additionally, the study contributes to expanding open-access datasets and lightweight ML models, 
expanding access to optimization tools in resource-limited environments.

This research bridges critical gaps in previous studies by presenting a comprehensive 
framework for material and device optimization while providing scalable solutions to expedite 
PTSC commercialization. These ϐindings position CuSCN-based PTSCs as a transformative, 
sustainable alternative for advancing renewable energy technologies and meeting global energy 
demands.

Introduction
Perovskite-silicon tandem solar cells have emerged 

as a groundbreaking advancement in photovoltaic (PV) 
technologies, combining the high efϐiciency and tunability 
of perovskites with the robust and scalable silicon platform. 
The tandem conϐiguration leverages the wide bandgap 
of perovskite materials to complement silicon’s spectral 
absorption, enabling power conversion efϐiciencies (PCEs) 
that surpass the theoretical limits of single-junction solar 
cells. Current laboratory-scale efϐiciencies exceed 30%, 

making tandem cells a promising candidate for meeting 
global renewable energy demands [1,2]. However, signiϐicant 
technical and operational challenges remain in translating 
these laboratory successes into industrial applications, 
including stability under operational conditions, scalability 
of manufacturing processes, and cost-effective integration of 
advanced materials.

Copper(I) thiocyanate (CuSCN) has emerged as a leading 
hole transport material (HTM) for perovskite-silicon tandem 
cells due to its unique combination of low cost, high carrier 

https://crossmark.crossref.org/dialog/?doi=10.29328/journal.acr.1001132&domain=pdf&date_stamp=2025-03-26


Machine Learning-enhanced Copper(I) Thiocyanate-based Perovskite-silicon Tandem Solar Cells: Optimization Strategies for 
Enhanced Effi ciency and Stability

 www.clinmedcasereportsjournal.com 082https://doi.org/10.29328/journal.acr.1001132

mobility, and excellent chemical stability [3,4]. Unlike organic 
HTMs such as spiro-OMeTAD, CuSCN offers superior thermal 
and environmental stability, reducing the degradation rates 
commonly observed in tandem cells. Moreover, the tunable 
electronic properties of CuSCN  enhance charge extraction 
efϐiciency and minimize recombination losses at the interface 
between the perovskite and silicon layers. Despite these 
advantages, CuSCN integration faces critical challenges, 
such as achieving defect-free deposition, reducing surface 
roughness, and optimizing interface quality to prevent 
performance losses [5,6].

Traditional optimization approaches rely heavily on 
iterative experimental methods, which are time-consuming, 
resource-intensive, and poorly suited for exploring the vast 
parameter spaces of tandem solar cell design. These methods 
often fail to address the interconnected variables governing 
material properties, fabrication processes, and operational 
performance [7,8]. For example, while chemical tuning of 
perovskite compositions and doping strategies for CuSCN have 
shown incremental improvements, these strategies struggle to 
scale efϐiciently or maintain performance consistency under 
varying environmental conditions [9]. The limitations of such 
conventional approaches underscore the need for innovative 
methodologies capable of delivering comprehensive and 
reproducible optimizations.

Machine learning (ML) has emerged as a powerful enabler 
of next-generation PV research, offering unprecedented 
capabilities for predictive modeling, data-driven optimization, 
and real-time adaptability. By rapidly analyzing complex 
datasets, ML can identify optimal material compositions, 
predict stability metrics, and streamline fabrication 
processes, signiϐicantly reducing the time and cost associated 
with traditional experimental workϐlows[10,11]. Recent 
breakthroughs have highlighted the diverse applications 
of ML in perovskite-silicon tandem solar cells. Zhang, et al. 
[10] employed genetic algorithms to optimize interfacial 
layer properties, achieving efϐiciencies exceeding 32%. 
Similarly, Huang, et al. [4] utilized generative adversarial 
networks (GANs) to predict novel perovskite compositions 
with enhanced thermal stability, while transfer learning 
techniques have enabled low-data optimization of tandem 
cell architectures [12]. Gupta, et al. [13] applied unsupervised 
learning to cluster defect patterns, enabling targeted 
interventions to improve material reliability. Together, these 
studies illustrate how ML-driven approaches can streamline 
the development of efϐicient, stable, and scalable tandem 
solar cells. These advancements highlight the transformative 
potential of ML in addressing longstanding challenges in 
tandem solar cell research.

Despite its promise, the application of ML to CuSCN-
based tandem solar cells remains underexplored. Current 
research primarily focuses on individual aspects, such as 
material properties or device stability, without integrating 

these efforts into a uniϐied framework. Moreover, scalability 
and environmental considerations, such as reducing 
manufacturing costs and minimizing the ecological footprint, 
are often overlooked [14,15]. While studies such as Gupta, 
et al. [13] have demonstrated the utility of ML in identifying 
defect formation mechanisms, and Ahmed, et al. [9] optimized 
anti-reϐlective coatings using reinforcement learning, these 
efforts lack a uniϐied framework that integrates ML across the 
entire development pipeline. This is particularly important 
given the need  to optimize not only material properties but 
also fabrication techniques, interface quality, and scalability 
for real-world applications. Addressing these gaps requires 
a comprehensive approach that combines ML’s predictive 
power with experimental validation to deliver practical, 
scalable solutions.

The present study bridges this gap by leveraging ML 
techniques to enhance the performance, stability, and 
scalability of CuSCN-based perovskite-silicon tandem 
solar cells. By integrating ML-driven predictive modeling 
with experimental validation, this work proposes novel 
strategies for optimizing material properties, reϐining 
deposition methods, and engineering interfaces to achieve 
high-efϐiciency and long-lasting tandem cells. Additionally, 
the study addresses scalability challenges by incorporating 
real-time process control and adaptive algorithms to ensure 
reproducibility across diverse manufacturing conditions.

A key innovation of this research lies in its holistic 
approach, which combines material discovery, interface 
engineering, and process optimization within a single ML-
enhanced framework. This comprehensive methodology 
enables simultaneous advancements in efϐiciency, stability, 
and cost-effectiveness, setting a new benchmark for tandem 
solar cell research. Unlike prior studies that focus on isolated 
aspects of optimization, this work emphasizes the integration 
of ML into the entire development lifecycle, from material 
selection to industrial-scale fabrication.

Despite advancements in ML-driven solar technologies, 
signiϐicant gaps remain in the literature, particularly regarding 
the scalability of CuSCN-based tandem cells and the integration 
of ML techniques into real-time operational environments. 
This study addresses these gaps by providing a uniϐied, data-
driven framework for optimizing CuSCN applications, paving 
the way for more efϐicient, sustainable, and commercially 
viable tandem solar cells. By establishing new paradigms for 
ML-enhanced solar cell research, this work contributes to the 
broader goal of achieving global energy sustainability.

Limitations and drawbacks of current approaches: 
The need for machine learning-enhanced 
optimization

Existing solutions in the design of perovskite-silicon 
tandem cells primarily focus on material selection and 
interface engineering, with limited application of predictive 
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and optimization algorithms. Traditionally, researchers have 
used empirical methods to optimize tandem cell performance, 
an approach that is both time-consuming and limited in scope. 
Current optimization efforts involve adjusting parameters 
such as perovskite composition, HTM, and buffer layers, yet 
they often fall short in addressing the interdependence of 
these variables on cell efϐiciency and stability. Moreover, 
while CuSCN shows promise as an HTM, challenges such as 
achieving uniform ϐilm formation and compatibility with 
varying perovskite compositions continue to hinder its 
widespread adoption . Machine learning can address these 
limitations by creating models that predict performance 
based on a vast array of material and process variables, thus 
enhancing both material selection and processing techniques.

Despite advances in tandem solar cell technology, current 
empirical methods for device optimization have notable 
drawbacks. The reliance on trial-and-error processes limits 
the ability to explore a vast parameter space efϐiciently, 
potentially overlooking optimal conϐigurations. Furthermore, 
the complex interfacial dynamics within tandem cells, 
particularly with emerging materials like CuSCN, require 
sophisticated analytical approaches to ensure stability and 
performance. In CuSCN-based tandem cells, issues such as 
interfacial degradation, limited scalability, and suboptimal 
charge transfer rates highlight the need for innovative 
optimization methods beyond traditional approaches.

The application of machine learning in optimizing CuSCN-
based tandem solar cells is a promising area that addresses 
the limitations of conventional methods. Machine learning 
enables the development of predictive models that consider 
the interdependent effects of materials and fabrication 
processes on device performance. By integrating ML models 
into the design process, researchers can reduce the time and 
cost of experimentation, improve parameter optimization, and 
increase device efϐiciency. Furthermore, machine learning can 
assist in identifying stability patterns across different material 
combinations, offering insights into how CuSCN interacts 
with other layers in the tandem cell. This approach not only 
accelerates the optimization process but also expands the 
potential for novel material discovery, particularly in HTMs 
and interfacial engineering.

The present study aims to provide a systematic review of the 
integration of CuSCN in perovskite-silicon tandem solar cells 
and evaluate the application of machine learning to optimize 
their performance. Speciϐically, this paper will assess the role 
of CuSCN as an HTM, the challenges associated with its use, 
and the potential of machine learning models in addressing 
these challenges. The objectives are to (1) summarize recent 
advancements in CuSCN-based tandem cells, (2) identify 
critical research gaps where machine learning can contribute, 
and (3) propose a framework for integrating ML techniques 
into tandem cell design and optimization. The scope of this 
study encompasses recent studies, highlighting innovations in 

material science, machine learning algorithms, and solar cell 
engineering. By synthesizing ϐindings across these domains, 
this research seeks to establish a foundation for future 
research and development in ML-enhanced perovskite-silicon 
tandem solar cells.

Literature review
The advancement of perovskite-silicon tandem solar cells 

has captured signiϐicant attention due to their potential to 
surpass the efϐiciency limitations of traditional silicon-based 
photovoltaics. Tandem cells leverage the unique bandgap 
properties of perovskite materials in conjunction with silicon, 
enabling an expanded absorption of the solar spectrum 
and, consequently, higher power conversion efϐiciencies. 
Since 2019, perovskite-silicon tandem cells have achieved 
efϐiciencies beyond 30%, and recent efforts have focused on 
increasing stability and commercial viability [7]. These devices 
utilize a combination of high-bandgap perovskite top cells 
and silicon bottom cells, each optimizing different sections 
of the light spectrum [1]. This approach not only allows for 
more effective light capture but also offers a promising path 
toward reducing the cost per watt, a critical factor in the 
competitiveness of solar technologies [16].

The structural conϐiguration of tandem cells has evolved 
considerably. While initial designs focused on simple planar 
conϐigurations, recent innovations incorporate textured 
silicon layers to enhance light trapping while minimizing 
reϐlection losses , a key strategy in maximizing efϐiciency 
[17]. Furthermore, perovskite formulations have been 
adapted to be more compatible with silicon-based structures, 
improving both interfacial stability and optoelectronic 
compatibility. Studies highlight the critical role of halide 
composition adjustments  in perovskites to optimize bandgap 
alignment, which is crucial for achieving efϐicient current 
matching between the perovskite and silicon layers [18]. The 
performance of perovskite-silicon tandem cells is also heavily 
inϐluenced by the recombination layers, with recent research 
focusing on optimizing these interfaces to reduce charge 
recombination and increase device stability [19].

However, challenges remain in terms of long-term 
operational stability, particularly with respect to perovskite 
degradation under real-world environmental conditions such 
as high temperatures and UV exposure. Stability advancements 
have been explored, including the incorporation of additional 
protective layers and compositional engineering, which help 
to reduce the degradation rates of perovskite materials in 
tandem structures [20]. The use of additive engineering, such 
as doping perovskites with halide ions, has further shown 
promise in stabilizing the materials under operational stress, 
although research in this area remains ongoing [21]. Thus, 
while perovskite-silicon tandem cells have seen remarkable 
progress, signiϐicant challenges in scalability, longevity, and 
environmental resilience continue to drive research in this 
domain.
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Copper(I) thiocyanate (CuSCN) has emerged as a 
prominent hole transport material (HTM) in perovskite-
silicon tandem solar cells due to its favorable properties, such 
as high hole mobility, chemical stability, and compatibility 
with low-cost manufacturing processes. CuSCN offers an 
alternative to organic HTMs, which are often costly and 
susceptible to degradation under sunlight and thermal stress 
(Han, et al. 2021). Furthermore, CuSCN’s wide bandgap allows 
for minimal parasitic absorption, which enhances the overall 
efϐiciency of tandem cells by permitting more light to reach 
the active perovskite layer. Early studies focused on the 
integration of CuSCN as a replacement for spiro-OMeTAD in 
single-junction perovskite cells, where it showed promising 
results in terms of stability and cost-effectiveness [22]. As 
tandem cell architectures evolved, CuSCN’s role expanded, 
with its implementation in perovskite-silicon tandem devices 
demonstrating comparable efϐiciency improvements [23].

A notable advancement in CuSCN-based transport layers 
involves improving ϐilm uniformity and adhesion to the 
perovskite layer. Studies have explored deposition methods, 
such as electrochemical deposition and spin-coating, to achieve 
optimal CuSCN ϐilm morphology, which is critical for effective 
charge transport and minimizing recombination losses [3]. 
However, challenges remain in terms of controlling the CuSCN-
perovskite interface, where poor adhesion or morphological 
mismatches can lead to increased charge recombination and 
device instability [24]. Additionally, while CuSCN is stable 
under standard operational conditions, its long-term stability 
in tandem cells, especially under ϐluctuating environmental 
conditions, requires further investigation to meet commercial 
viability standards [25].

The integration of CuSCN in tandem cell applications has 
shown promising efϐiciency and stability beneϐits, yet there 
are still issues related to its interaction with the perovskite 
material. For instance, CuSCN may introduce unwanted 
impurities or defects at the interface, potentially impacting 
the charge transfer process and lowering device performance. 
Recent research has sought to address these challenges 
through interface engineering techniques, such as the use 
of buffer layers or modifying the perovskite composition to 
better align with the properties of CuSCN. Overall, CuSCN 
represents a compelling alternative to traditional HTMs, 
with research continuing to optimize its performance and 
adaptability for high-efϐiciency tandem applications.

Machine learning (ML) has become increasingly integrated 
into the ϐield of solar cell research, particularly as a tool 
for optimization in perovskite and tandem solar cells. ML 
techniques offer an efϐicient means of navigating the complex 
parameter space inherent to solar cell design, allowing for 
rapid prediction and optimization of material and process 
parameters. In the context of perovskite-silicon tandem solar 
cells, ML has been used to predict outcomes based on a wide 
array of variables, including material composition, structural 

conϐiguration, and environmental conditions (Wang, et al. 
2022). For example, ML algorithms have been employed to 
optimize bandgap alignment in tandem cells, which is critical 
for maximizing power conversion efϐiciency. These models 
can quickly identify the optimal perovskite composition to 
complement silicon’s absorption properties, enhancing device 
performance and stability [26].

Furthermore, ML has been instrumental in the predictive 
modeling of solar cell degradation, allowing researchers 
to forecast device lifespan under various environmental 
conditions. This capability is particularly beneϐicial for 
perovskite-based tandem cells, which face stability challenges 
due to the sensitivity of perovskite materials to moisture, 
oxygen, and heat. Machine learning algorithms, such as 
support vector machines and neural networks, have been 
used to identify degradation patterns and suggest preventive 
measures, such as encapsulation techniques and material 
modiϐications [27]. Additionally, generative models like 
Gaussian processes and Bayesian optimization have proven 
effective in exploring material properties and guiding 
experimental design, reducing the number of experimental 
trials needed and accelerating the discovery of high-
performance materials (Koh & Lim 2020).

Machine learning enables the identiϐication and prediction 
of optimal parameters for CuSCN-based hole transport layers 
(HTLs), improving device efϐiciency and reliability. Recent 
studies by Hui, et al. [28] have leveraged predictive modeling 
to analyze complex datasets from experimental solar cells, 
identifying ideal conditions for CuSCN layer thickness, 
deposition rate, and doping levels. By using supervised ML 
models, the research outlines speciϐic CuSCN deposition 
conditions that yield the most stable and efϐicient tandem cells. 
These predictive models allow researchers to simulate a wide 
range of environmental and structural parameters, drastically 
reducing the time needed for trial-and-error experimentation 
[28].

Furthering this, Nguyen, et al. [29] employed ML algorithms 
in the optimization of CuSCN crystallization techniques, which 
play a crucial role in charge transfer and HTM efϐiciency. 
Their work explored neural network models that learn from 
high-throughput experimental data, analyzing variables 
such as temperature and solvent types to achieve uniformly 
crystallized CuSCN ϐilms. This technique has been particularly 
beneϐicial in reducing grain boundaries and other defects that 
limit electron ϐlow within CuSCN layers [29]. Through such 
methods, the study highlights that ML can quickly narrow 
down the best parameters for achieving optimal CuSCN 
performance, directly impacting overall cell efϐiciency.

The interface between CuSCN and perovskite layers is 
pivotal for long-term device stability and efϐiciency. Several 
recent studies focus on ML-assisted methodologies to improve 
interfacial engineering in tandem solar cells. A study by Shi, et al.
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(2023) explored using reinforcement learning algorithms 
to optimize interfacial adhesion and reduce chemical 
degradation between CuSCN and perovskite materials. The 
ML model used in this study analyzed interactions at the 
molecular level, identifying ideal interfacial compositions 
that minimize degradation when exposed to moisture and UV 
light. The model suggested speciϐic interfacial additives that 
improve the binding energy between CuSCN and perovskite, 
effectively reducing delamination and increasing device 
lifespan (Shi, et al. 2023).

Another study by Zhang, et al. [30] applied ML models to 
predict potential degradation pathways in CuSCN-perovskite 
interfaces. This predictive approach allowed for proactive 
identiϐication of stability-compromising factors such as 
interlayer diffusion and photodegradation under high-
intensity light conditions. Zhang, et al. used a combination of 
gradient boosting and random forest models to assess the long-
term performance impact of different material compositions 
and interfacial modiϐiers. By integrating ML-driven insights 
with experimental validation, the study proposed speciϐic 
encapsulation techniques tailored for CuSCN-based PSTSCs, 
addressing a key challenge in maintaining stability across 
varied environmental conditions [30].

The scalability of CuSCN-based PSTSCs is another critical 
area where ML applications offer substantial advancements. 
Traditional fabrication methods often face challenges in 
producing consistently high-quality CuSCN ϐilms at scale. Xu, 
et al. [1] demonstrated the use of ML in optimizing scalable 
deposition techniques, particularly focusing on spray-coating 
and roll-to-roll processing for CuSCN ϐilms. Through iterative 
ML models, the study identiϐied parameter settings—such as 
nozzle distance, solvent concentration, and drying times—
that maximize layer uniformity and reduce defects. This 
approach signiϐicantly enhances the feasibility of CuSCN for 
large-scale production, potentially lowering manufacturing 
costs and enabling commercialization [1].

Similarly, a study by Khan, et al. [31] applied ML models 
to predict and mitigate scalability bottlenecks in CuSCN-
based PSTSCs. The study utilized reinforcement learning to 
reϐine processing parameters dynamically during production, 
ensuring quality consistency across larger batches. This 
approach is especially beneϐicial in overcoming the quality 
trade-offs typically seen in scaled-up processes, where defect 
rates can increase due to variability in deposition conditions. 
By adapting processing parameters in real time, the 
reinforcement learning model maintained high-quality CuSCN 
layers while also reducing production times and material 
waste [31].

Another critical contribution to scalability was made by Han, 
et al. [32], who employed ML to assess the economic feasibility 
of CuSCN-based tandem cells in large-scale production. The 
study incorporated predictive economic modeling with ML 

to simulate various manufacturing scenarios, identifying 
cost-effective production methods that maintain the high-
performance standards required for commercial applications. 
By balancing efϐiciency improvements with cost reductions, 
ML-driven strategies help to address one of the most signiϐicant 
barriers to the widespread adoption of CuSCN-based PSTSCs 
in the solar market [32].

Despite these advancements, the application of machine 
learning in solar cell technology faces several challenges. 
Data scarcity remains a signiϐicant obstacle, as high-quality 
experimental datasets are often limited, especially for 
emerging materials like perovskites. To address this, synthetic 
data generation and transfer learning have been proposed 
as solutions to expand training datasets and improve model 
accuracy [33]. Moreover, interpretability is another concern, 
as many ML models, particularly deep learning architectures, 
operate as black boxes, making it difϐicult for researchers to 
understand the underlying physical mechanisms driving the 
predictions. Efforts to improve model transparency, such as 
explainable artiϐicial intelligence (XAI) techniques, are gaining 
traction, helping to bridge the gap between ML predictions 
and experimental validation [34].

The role of ML in optimizing CuSCN-based perovskite-
silicon tandem cells is especially noteworthy. By leveraging 
ML algorithms, researchers can systematically explore 
the complex interactions between CuSCN and perovskite 
materials, guiding the development of optimized interface 
engineering techniques. Additionally, ML models can assist 
in tailoring deposition parameters and identifying stability-
enhancing additives, both of which are crucial for the 
commercial viability of CuSCN-based tandem cells. Looking 
forward, the integration of ML with solar cell research not 
only promises to enhance device efϐiciency and stability 
but also opens avenues for discovering novel materials and 
conϐigurations that would be challenging to identify through 
traditional approaches alone

Research gap and motivation

Perovskite-silicon tandem solar cells (PSTSCs) offer a 
promising solution for achieving higher power conversion 
efϐiciencies beyond the limits of single-junction silicon 
cells, especially when combined with copper(I) thiocyanate 
(CuSCN) as a hole transport material (HTM). Despite recent 
advancements, several challenges persist that inhibit the 
full commercial adoption of CuSCN-based tandem cells. This 
section explores the current challenges, unexploited potential, 
and speciϐic research gaps that justify the need for machine 
learning-enhanced optimization strategies in PSTSCs.

CuSCN is considered an attractive HTM due to its high hole 
mobility, stability, and compatibility with perovskite-based 
solar cells (Aydin, et al. 2023). However, signiϐicant challenges 
remain in its integration within tandem cell architectures. One 
major issue is achieving optimal interfacial stability between 
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CuSCN and the perovskite layer. Unlike organic HTMs that may 
degrade rapidly, CuSCN provides enhanced stability, yet the 
formation of consistent, defect-free interfaces is challenging. 
Variability in fabrication processes often leads to issues with 
crystallinity, which directly impacts the cell’s efϐiciency and 
longevity [35]. Additionally, the intrinsic properties of CuSCN, 
such as low conductivity relative to other HTMs, necessitate 
further engineering to enhance charge transfer dynamics 
without compromising the material’s stability [36].

Another key challenge involves optimizing CuSCN 
deposition techniques . The thin, uniform CuSCN layers 
required for effective HTM application are difϐicult to achieve 
on a commercial scale. Solution-based deposition methods, like 
spin coating, often yield uneven layers, leading to inconsistent 
performance. Vacuum deposition, while promising, is costly 
and may not be feasible for large-scale production (Shi, et 
al. 2023). The need for scalable, cost-effective deposition 
techniques highlights an area where machine learning 
(ML) models could streamline optimization by identifying 
parameters that affect layer uniformity and thickness across 
different environmental conditions.

Another critical challenge is ensuring environmental 
stability , as CuSCN-based cells often show degradation under 
prolonged exposure to moisture and UV light. Although recent 
studies propose encapsulation techniques to mitigate these 
effects, the solution is not universally effective, especially 
in diverse climates [5]. Moreover, achieving optimal CuSCN 
crystallization in various environmental conditions remains 
unresolved. Identifying fabrication parameters that enhance 
stability across different climates would signiϐicantly improve 
CuSCN’s viability as an HTM in tandem solar cells.

Machine learning offers a promising approach to address 
the aforementioned challenges by analyzing vast datasets to 
predict optimal fabrication and material conϐigurations for 
CuSCN-based tandem cells. ML techniques such as neural 
networks and random forests are instrumental in predicting 
material behavior under various conditions, guiding the 
selection of CuSCN deposition techniques and interface 
engineering methods that improve cell performance [29]. 
Through ML, researchers can explore combinations of 
materials, deposition methods, and environmental conditions 
that yield the most efϐicient and stable tandem cells. 
Additionally, supervised learning algorithms can assist in the 
rapid analysis of experimental data, identifying trends that 
are not immediately apparent through conventional methods 
[24].

Another promising application of ML is in real-time 
performance monitoring. By embedding sensors and using 
ML algorithms to analyze performance data, it is possible 
to predict failure modes and degradation patterns speciϐic 
to CuSCN-based tandem cells. This approach would enable 
dynamic adjustments in operating conditions, extending the 

lifespan and efϐiciency of solar installations [37]. Furthermore, 
reinforcement learning models can be utilized to optimize 
fabrication processes dynamically, adjusting parameters 
such as temperature, pressure, and humidity to achieve ideal 
CuSCN crystallinity during the production phase [1].

ML-based predictive modeling also enables a deeper 
understanding of the electrochemical interactions within 
CuSCN-based layers. Machine learning algorithms can be 
used to simulate potential degradation pathways, enabling 
researchers to anticipate and mitigate issues related to 
stability and efϐiciency loss. By identifying critical parameters 
that inϐluence device performance, ML facilitates targeted 
improvements in material design, offering a faster and more 
precise path to optimized CuSCN applications in tandem solar 
cells.

This research aims to bridge several speciϐic research gaps 
identiϐied within the current literature. First, it addresses the 
lack of scalable, reproducible deposition techniques for CuSCN, 
focusing on ML-driven strategies for optimizing deposition 
parameters and achieving uniform layers. The study also 
targets the persistent interfacial stability issues in CuSCN-
based tandem cells, highlighting how ML models can predict 
optimal interface compositions and conϐigurations to mitigate 
degradation under environmental stresses [18]. Additionally, 
it explores the role of ML in performance monitoring and 
predictive maintenance, proposing a framework for the 
real-time adaptation of operating conditions based on 
environmental data and performance metrics.

Another key gap is the limited exploration of ML-guided 
material discovery. Although some studies have applied 
ML to predict material properties, there is a need for more 
comprehensive approaches that integrate ML into the full 
design-to-deployment pipeline for CuSCN-based tandem cells 
[32]. This research proposes speciϐic ML techniques, such 
as reinforcement learning and unsupervised clustering, for 
accelerating the discovery of novel CuSCN formulations with 
enhanced performance characteristics. The goal is to provide 
a structured overview of ML applications that can improve the 
commercial viability of CuSCN-based PSTSCs by addressing 
scalability, stability, and efϐiciency challenges.

Through an extensive analysis of recent research, this work 
seeks to consolidate knowledge on the interplay between 
material science, fabrication techniques, and machine learning 
in advancing CuSCN-based perovskite-silicon tandem cells. 
By doing so, it offers a roadmap for future research and 
development, supporting the transition of this promising 
technology from experimental labs to real-world applications.

Machine learning in solar cell design

The evolution of machine learning (ML) techniques in 
solar cell design is instrumental in enhancing the efϐicacy, 
stability, and scalability of Copper (I) Thiocyanate (CuSCN)-
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based perovskite-silicon tandem solar cells. Machine 
learning (ML) has become an indispensable tool in the design 
and optimization of solar cells, enabling advancements that 
traditional experimental approaches would take signiϐicantly 
longer to achieve. In photovoltaic research, particularly 
with complex tandem architectures like perovskite-silicon, 
machine learning accelerates material discovery, improves 
parameter optimization, and aids in predictive modeling for 
efϐiciency and stability. Recent advancements highlight the 
signiϐicant potential of ML techniques for optimizing solar 
cells by analyzing extensive datasets on material properties, 
environmental conditions, and fabrication parameters. 
This study examines the primary machine learning 
methods employed in solar cell research, emphasizing their 
applications, advantages, limitations, and future directions in 
improving device performance.

Overview of machine learning techniques

Machine learning has transformed solar cell research by 
enabling data-driven insights that signiϐicantly enhance the 
efϐiciency, scalability, and stability of photovoltaic devices. 
In perovskite-silicon tandem solar cells, these advancements 
are especially impactful, as ML techniques can predict optimal 
material properties, simulate device behavior under various 
environmental conditions, and accelerate the discovery of 
novel material combinations. This section examines key ML 
techniques—supervised learning, unsupervised learning, deep 
learning, reinforcement learning, and hybrid approaches—
and highlights their speciϐic applications and contributions 
to photovoltaic research. The study delves deeper into the 
most widely employed ML techniques, highlighting their 
methodologies, applications, comparative strengths, and 
limitations, as well as potential future directions.

Machine learning techniques in solar cell research 
encompass a range of algorithms from supervised and 
unsupervised learning to deep learning and reinforcement 
learning. Supervised learning, where models are trained 
on labeled datasets, is predominantly used for predicting 
performance metrics such as power conversion efϐiciency 
(PCE), stability, and lifetime of solar cells. Regression models 
like support vector machines (SVM), decision trees, and 
random forests have shown effectiveness in forecasting 
photovoltaic characteristics based on input features related 
to material and environmental conditions [38]. In contrast, 
unsupervised learning, which does not require labeled data, 
is utilized for clustering material properties and identifying 
patterns in vast data, which can guide material selection and 
process optimization.

Deep learning, particularly convolutional neural networks 
(CNNs), is leveraged for feature extraction in high-dimensional 
data, such as imaging data for defect analysis in perovskite 
layers. CNNs have also been employed in tandem cell design 
to optimize light management structures by evaluating optical 

properties at different conϐigurations [39]. Reinforcement 
learning, though less commonly applied, is emerging in 
adaptive control systems for real-time optimization in the 
manufacturing of solar cells. Techniques such as Q-learning and 
deep Q-networks (DQN) demonstrate potential for adaptive 
layer deposition  in CuSCN-based perovskite-silicon tandem 
cells, where precise control over deposition parameters can 
enhance layer uniformity and interfacial stability [21].

Recent advancements in ML techniques have also 
incorporated ensemble methods and hybrid models, which 
combine multiple algorithms to enhance prediction accuracy. 
For instance, ensemble approaches using bagging and boosting 
techniques improve the robustness of predictions in solar 
cell performance, integrating different algorithms’ strengths 
to address the high variability in material properties [1]. 
Bayesian optimization methods, combined with deep learning 
models, further improve the parameter tuning process, 
especially in tandem cell designs where multiple parameters 
are interdependent. This methodology is advantageous in 
CuSCN-based tandem cells, where Bayesian methods can 
optimize deposition and annealing temperatures, leading to 
enhanced stability [7].

Supervised learning in solar cell research

Supervised learning techniques are foundational in 
solar cell optimization, used to predict parameters such as 
power conversion efϐiciency (PCE), ϐill factor, and stability. 
Supervised learning involves training a model on a labeled 
dataset, where input features (such as material composition 
or fabrication conditions) are mapped to target outcomes 
(e.g., efϐiciency or stability metrics). This approach is 
widely used for predicting performance parameters and 
optimizing device conϐigurations. Support vector machines 
(SVM) and decision trees are among the most effective 
supervised learning algorithms in solar cell research, where 
they predict power conversion efϐiciency (PCE), assess 
material stability, and evaluate potential degradation under 
varying environmental conditions [18]. Random forests, 
an ensemble-based extension of decision trees, have been 
applied to improve model accuracy, especially when dealing 
with complex interactions between material properties and 
external stressors, like temperature and light intensity [40].

In CuSCN-based tandem cells, supervised models assist 
in predicting how modiϐications in CuSCN ϐilm thickness or 
interface treatments affect electron transport and charge 
recombination rates. For instance, linear regression and 
neural networks predict how layer thickness impacts the open-
circuit voltage (V_OC), optimizing for conditions that prevent 
recombination losses while maintaining transparency [22]. A 
schematic of supervised learning in solar cell optimization (see 
Figure 1) demonstrates the process where input parameters 
are fed into the model to predict PCE, followed by adjustments 
in material processing for improved performance.
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In this approach, labeled datasets containing input-output 
pairs guide the ML model in associating speciϐic material or 
environmental characteristics with performance metrics. 
Common supervised learning algorithms include:

Linear regression and polynomial regression: These 
regression models are simple yet effective for predicting 
linear and nonlinear relationships in solar cell parameters. 
They are often employed in early-stage material testing, 
where linear relationships between variables like layer 
thickness and PCE can be informative. While limited by their 
simplicity, regression models provide a baseline for assessing 
fundamental trends.

Support Vector Machines (SVM): SVM models 
are commonly applied for classiϐication tasks, such as 
distinguishing high-performance materials from low-
performance ones based on optical or electronic properties. 
SVMs are advantageous in applications where clear boundaries 
in feature space are needed; however, they struggle with 
complex, high-dimensional data common in perovskite-silicon 
cell research (Han, et al. 2021).

Decision trees and random forests: These tree-based 
models are widely used for predicting PCE and stability 
because they manage nonlinearity well. Random forests, an 
ensemble of multiple decision trees, perform particularly 
well by averaging predictions to reduce overϐitting, making 
them robust for datasets with high variance, as often seen in 
experimental solar cell data.

The supervised learning workϐlow typically involves 
dataset preprocessing, model training, and validation, 
illustrated in Figure 1. This ϐlowchart showcases how raw data 
from experiments (e.g., thickness, material type, deposition 
method) is processed, then fed into models to predict 
efϐiciency outcomes. This iterative approach is essential for 
reϐining model accuracy and ensuring reliable predictions in 
material optimization.

Supervised learning workfl ow in solar cell optimization 

The supervised learning workϐlow for solar cell 
optimization comprises four main stages, interconnected 
through a systematic data ϐlow and feedback mechanism. 
This approach has become increasingly prevalent in materials 
science and photovoltaic research [12,41].

Data collection stage: The workϐlow begins with raw 
experimental data collection, encompassing various solar 
cell parameters such as material composition, fabrication 
conditions, and device characteristics. Recent studies have 
emphasized the importance of comprehensive data collection 
protocols to ensure data quality and reproducibility [42]. 
The raw data undergoes initial processing to extract relevant 
solar cell parameters, following standardized procedures 
established in the ϐield [43].

Data preprocessing stage: Data preprocessing involves 
three critical steps: Data cleaning to remove outliers and 
handle missing values, utilizing robust statistical methods [44]; 
Feature engineering to create meaningful representations 
of the raw parameters [45]; and Data splitting into training, 
validation, and testing sets, typically following an 80-10-10 
ratio as recommended by recent machine learning studies in 
materials science [30].

Model development stage: The model development 
phase implements a rigorous training and validation protocol. 
Training processes typically employ various architectures, 
from traditional machine learning algorithms to advanced 
deep learning models [46]. The validation steps ensure model 
generalization, while performance evaluation uses metrics 
such as Mean Absolute Error (MAE) and Root Mean Square 
Error (RMSE) to assess prediction accuracy [47].

Optimization stage: The ϐinal stage focuses on model 
reϐinement through: Hyperparameter tuning using techniques 
such as Bayesian optimization [48]; Model reϐinement based 
on validation results [49]; and Development of the ϐinal 
model for deployment. A crucial aspect of this workϐlow is the 
feedback loop, where model predictions inform subsequent 
experiments, creating an iterative optimization process [50].

Unsupervised learning for material discovery and 
clustering

Unsupervised learning is valuable for identifying patterns 
and clusters within unlabeled datasets, which is critical in 
solar cell research where exploratory analysis of material 
properties is often required. Unsupervised learning is used 
in cases where datasets lack labeled outputs. Techniques like 
k-means clustering and principal component analysis (PCA) 
are applied in the classiϐication and grouping of materials with 
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Figure 1: Schematic of supervised learning workfl ow in solar cell optimization.
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similar characteristics. In solar cell research, unsupervised 
models identify underlying patterns in material compositions, 
categorizing them into groups with high potential for 
performance optimization (Han, et al. 2021).

In tandem cells, hierarchical clustering has been useful 
for categorizing materials based on thermal stability and 
optical properties. This approach helps to reϐine the selection 
of materials that show compatibility with CuSCN, optimizing 
the hole transport layer (HTL) and its interaction with the 
perovskite top layer. Dimensionality reduction techniques 
like PCA simplify complex datasets, making it easier to visualize 
high-dimensional data, such as the effects of compositional 
variations on the stability and conductivity of CuSCN [1].

Techniques like clustering and principal component 
analysis (PCA) allow researchers to uncover hidden 
correlations in material properties that may inϐluence device 
performance.

K-means clustering: This algorithm clusters data into 
groups based on similarity, useful in categorizing materials 
with similar optoelectronic characteristics. For example, 
K-means clustering can group CuSCN samples based on grain 
size, surface morphology, and deposition conditions, helping 
researchers identify the best candidates for tandem cell 
applications (Wang, et al. 2022).

Principal Component Analysis (PCA): PCA reduces 
data dimensionality while retaining the most informative 
features, making it useful for analyzing complex, high-
dimensional data like spectroscopic and crystallographic 
information from perovskite samples. PCA can distill critical 
features that inϐluence solar cell efϐiciency, enhancing model 
interpretability.

Table 1 presents a comparison of supervised and 
unsupervised learning techniques in terms of their objectives, 
applications in solar cell research, and typical limitations. This 
tabular summary illustrates the strengths and weaknesses of 
each approach, providing a reference for researchers selecting 
the most appropriate ML methods for speciϐic tasks.

Deep learning for feature extraction and pattern 
recognition

Deep learning methods, including artiϐicial neural 
networks (ANNs) and convolutional neural networks (CNNs), 
are increasingly applied in solar cell research due to their 

ability to handle large, complex datasets. ANNs, which consist 
of layers of interconnected neurons, are particularly useful for 
capturing nonlinear relationships in material properties and 
device performance metrics.

Arti icial Neural Networks (ANNs): ANNs are effective 
in scenarios where nonlinear relationships between inputs 
(e.g., deposition rate, temperature, humidity) and outputs 
(e.g., PCE) are expected. For instance, ANNs have been used to 
predict stability in CuSCN-based tandem cells under various 
environmental conditions by analyzing degradation data [19]. 
However, ANNs are prone to overϐitting without sufϐicient 
training data, requiring regularization techniques such as 
dropout to maintain generalization.

Convolutional Neural Networks (CNNs): CNNs are 
particularly suited for image data, such as electron microscopy 
images used to evaluate defect densities in perovskite layers. 
By analyzing spatial features in these images, CNNs can detect 
structural inconsistencies that may lead to efϐiciency losses or 
stability issues, making them valuable for quality control in 
solar cell production (Kim, et al. 2023).

Deep learning, particularly convolutional neural networks 
(CNNs) and recurrent neural networks (RNNs), has proven 
invaluable for analyzing complex, high-dimensional data, 
including microscopy images and time-series data from 
photovoltaic degradation studies. CNNs excel in defect 
detection by analyzing cross-sectional images of perovskite 
and CuSCN ϐilms, identifying imperfections that may impair 
electron transport [20].

In tandem solar cells, CNNs are used for spectral analysis 
and optimization of light absorption, where they identify 
light management structures that can enhance the overall 
absorption efϐiciency of the tandem architecture. Table 2 
provides a CNN architecture applied in defect analysis for 
tandem cells. The model learns spatial hierarchies from 
images, detecting anomalies in the HTL layer that may affect 
cell performance.

Table 1: Comparative Analysis of Supervised and Unsupervised Learning Techniques in Solar Cell Optimization.

Technique Objective Applications Limitations Citation

Linear Regression Predict linear relationships Predicting efϐiciency based on thickness Limited to linear relationships Zhao, et al. 2023 [18]

SVM Classify high vs. low-performing 
materials Material classiϐication Difϐiculty with high dimensions Han, et al. 2021

Decision Trees / Random Forests Handle nonlinear data Predicting PCE and stability Can overϐit complex data Xu, et al. 2024 [1]

K-Means Clustering Group similar data points Grouping material properties May not handle non-globular clusters Wang, et al. 2022

PCA Reduce dimensionality Analyzing spectroscopic data Loss of interpretability Hui, et al. 2023 [28]

Table 2: CNN Architecture for Defect Detection in Tandem Solar Cells.
Layer Function

Input Layer Takes in raw images of CuSCN and perovskite layers
Convolutional Layers Applies ϐilters to detect edges, defects, and spatial patterns

Pooling Layer Reduces dimensionality, focusing on important features

Fully Connected Layer Combines features to classify defects or assess material 
uniformity

Output Layer Outputs predictions on defect presence and material quality
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The primary challenge with deep learning models is the 
computational resources required, which may limit their 
use to research institutions with advanced computational 
capabilities. However, advancements in cloud-based platforms 
and model optimization techniques, such as transfer learning, 
are making these models more accessible for broader research 
applications.

Reinforcement learning for adaptive process 
control

Reinforcement learning (RL) offers a promising yet 
underexplored approach in solar cell optimization, where 
it is particularly suited for real-time control and adaptive 
manufacturing processes. In RL, models learn optimal actions 
based on rewards or penalties, making them useful in scenarios 
requiring continuous adjustment, such as deposition process 
optimization in tandem solar cell manufacturing.

Q-learning and Deep q-Networks (DQN): Q-learning 
algorithms have been used in initial trials to optimize 
annealing times and temperatures during the deposition 
of CuSCN layers, where maintaining precise conditions is 
critical for layer uniformity. Deep Q-networks, an extension 
of Q-learning that incorporates deep learning, allow for more 
complex decision-making scenarios, such as dynamically 
adjusting deposition rates based on real-time sensor data to 
achieve optimal ϐilm thickness and crystallinity [7].

Reinforcement learning (RL), though still emerging in 
solar cell research, offers potential for real-time process 
optimization. In RL, an agent learns through trial and error, 
receiving rewards for actions that lead to desired outcomes. 
Deep Q-networks (DQNs) and policy gradient methods 
are applied to control deposition parameters during 
manufacturing, optimizing layer formation in real-time to 
achieve uniformity and enhance interfacial properties [29]. 
RL has also shown potential in adaptive tuning of CuSCN 
layer thickness and annealing processes, where precise 
control is necessary to optimize carrier mobility and prevent 
degradation.

In tandem cells, RL can dynamically adjust layer deposition 
rates based on feedback from in-situ sensors, improving the 
consistency and quality of CuSCN ϐilms. This technique enables 
manufacturers to respond to variations in environmental 
conditions and materials, maintaining stability and efϐiciency. 
Table 3 illustrates the RL process, where a model learns 
to adjust fabrication parameters to optimize performance 
metrics like V_OC and ϐill factor.

Hybrid and ensemble methods for enhanced 
predictive modeling

Hybrid approaches combine multiple ML techniques to 
leverage the strengths of each. Ensemble models, which 
aggregate outputs from multiple algorithms, enhance 
prediction accuracy and robustness in solar cell optimization. 
For instance, combining random forests with deep learning 
enables high-precision predictions for PCE while also 
accounting for long-term stability factors [37]. Bayesian 
optimization, integrated with deep learning models, enhances 
parameter tuning in CuSCN-based tandem cells by optimizing 
fabrication parameters such as annealing temperatures and 
solvent selection [28].

Hybrid models have also been instrumental in reducing 
data requirements, as they allow for the incorporation of 
domain knowledge (like known stability factors for certain 
materials) alongside predictive analytics. These models 
provide a balanced approach that maximizes the efϐiciency of 
data use and improves the accuracy of predictions, particularly 
for complex multilayer systems like tandem cells.

Case Studies in Reinforcement Learning and Hybrid 
Models for Solar Cell Optimization. Reinforcement learning 
(RL) has shown considerable promise in optimizing the 
deposition processes of materials like Copper(I) Thiocyanate 
(CuSCN) in solar cell manufacturing. One notable application 
of RL in this context is seen in the work by Nguyen, et al. [29], 
where they employed deep Q-networks (DQNs) for real-time 
control of CuSCN layer thickness. In this study, RL was used to 
dynamically adjust the deposition rate based on in-situ sensor 
feedback during the fabrication process. The RL agent learned 
to optimize deposition parameters to achieve uniform layer 
thickness, which is critical for enhancing charge transport 
and minimizing recombination losses in tandem cells. The 
outcomes demonstrated improved uniformity in CuSCN ϐilms, 
leading to a signiϐicant boost in both the open-circuit voltage 
(VOC) and ϐill factor of the resulting perovskite-silicon tandem 
solar cells.

Another practical implementation of RL was reported by 
Shi, et al. [7], who used Q-learning to optimize the annealing 
conditions for CuSCN layers. Here, the RL algorithm was 
trained to select optimal annealing temperatures and 
times, which directly inϐluence the crystallinity and thus 
the electrical properties of the CuSCN. The results showed 
a marked improvement in the stability and performance of 
the solar cells, with the RL approach allowing for adaptive 
responses to variations in material batches or environmental 
conditions during production.

Hybrid models, which combine different ML techniques, 
have been pivotal in overcoming some of the limitations 
of individual algorithms, particularly in the complex 
optimization required for tandem solar cells. López Paz [37] 
utilized a hybrid model integrating random forests and deep 

Table 3: Reinforcement Learning Process for Dynamic Solar Cell Fabrication Control.
Phase Description

Action Selection Agent selects actions (e.g., adjust deposition rate)
Environment 

Response Real-world fabrication environment responds, generating new state

Reward 
Evaluation

Reward calculated based on output performance (e.g., higher V_OC 
leads to positive reward)

Model Update Model updates strategy based on cumulative rewards for optimal 
fabrication control
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learning to predict the efϐiciency and stability of perovskite-
silicon cells. This model was adept at capturing both the non-
linear interactions between different fabrication variables and 
long-term performance under varying conditions. The hybrid 
approach allowed for a comprehensive analysis where the 
accuracy of deep learning was paired with the interpretability 
of random forests, facilitating better decision-making in 
material selection and process optimization.

Hui, et al. [28] and Hui, et al. [28] further illustrated the 
power of hybrid models by combining Bayesian optimization 
with deep learning for parameter tuning in CuSCN-based 
tandem cells. This study focused on optimizing the solvent 
system and annealing parameters, which are crucial for the 
formation of high-quality interfaces in tandem structures. The 
model not only reduced the experimental iterations needed 
for optimization but also provided insights into how different 
parameters interact, thereby guiding researchers towards 
conϐigurations with the highest potential for efϐiciency and 
longevity.

These case studies underscore the transformative potential 
of RL and hybrid models in solar cell technology, particularly 
in enhancing the fabrication processes of critical layers like 
CuSCN. By providing adaptive control and leveraging the 
strengths of various ML methods, these approaches are 
paving the way for more efϐicient, stable, and economically 
viable solar cells.

Comparative Analysis, Challenges and Future Directions 
Table 4 provides a comparative analysis of these ML 
techniques, illustrating their unique contributions, 
advantages, and limitations in solar cell research. While ML 
techniques have advanced solar cell research signiϐicantly, 
challenges remain. The need for large, high-quality datasets 
and the computational costs of deep learning models are major 
barriers. Future research should focus on developing more 
efϐicient algorithms and enhancing data-sharing frameworks. 
Additionally, integrating ML with in-situ experimental setups 
can further improve real-time process optimization. Exploring 
reinforcement learning for more adaptive control during 
fabrication could lead to improvements in CuSCN layer quality 
and tandem cell stability, making this technology more viable 
for commercial-scale production.

Future research in machine learning for solar cells 
is expected to explore hybrid and ensemble models that 

integrate the strengths of different ML techniques, providing 
more robust predictions across varied datasets. For example, 
integrating supervised and unsupervised learning in a hybrid 
framework can combine the predictive power of labeled 
data with the exploratory capacity of clustering algorithms, 
expanding the scope of materials that can be efϐiciently 
analyzed.

Additionally, the integration of reinforcement learning 
in solar cell fabrication promises improvements in process 
automation, enabling real-time adjustments that optimize 
material properties dynamically during production. Advances 
in explainable AI (XAI) are also anticipated to address one of 
the current limitations of deep learning models—their “black-
box” nature—by making model outputs more interpretable 
for researchers, enhancing the trust and adoption of ML 
solutions in solar cell design.

Application of machine learning in material 
selection

The integration of ML into the material selection process 
for CuSCN-based perovskite-silicon tandem cells is critical 
for achieving optimized designs that push the boundaries of 
efϐiciency and stability. Recent studies underscore ML’s role 
in material discovery, selection, and predictive modeling 
for stability and efϐiciency, marking signiϐicant progress in 
tandem solar cell technology. Table 5 summarizes recent 
studies/ advances on ML-enhanced material selection for 
solar cell applications.

Machine learning models such as Random Forest 
Regression and Deep Neural Networks have been applied 
in the prediction and optimization of CuSCN layers for tandem 
solar cells. Studies using Random Forest Regression [1] 
demonstrate its strength in predicting properties across 
vast datasets, helping isolate electron transport layer 
conϐigurations that boost electron mobility. In contrast, Deep 
Neural Networks (DNNs) exhibit proϐiciency in interface 
compatibility, which is paramount in tandem cell efϐiciency. 
In a study by López Paz, (2021), DNNs optimized CuSCN and 
perovskite interfaces, achieving a notable 15% efϐiciency 
boost by reϐining interface interactions.

The comparative analysis reveals distinct strengths in the 
models employed: Support Vector Machines (SVM) show 
signiϐicant promise in enhancing stability [18], especially 

Table 4: Comparative Analysis of Machine Learning Techniques in Solar Cell Research.
ML Technique Application Advantages Challenges References

Supervised Learning PCE prediction, degradation analysis High accuracy, interpretable Requires labeled data Zhao, et al. 2023 [1]; Xu, et al. 
2024 [18]

Unsupervised Learning Material clustering, dimensionality 
reduction Identiϐies hidden patterns Limited to exploratory analysis Bhatti, et al. 2022; Han, et al. 2021 

[40]

Deep Learning (CNNs) Defect detection, spectral optimization Handles high-dimensional data, effective 
in image data Computationally intensive Khan, et al. 2020; [20] Kim, et al. 

2021 [21]
Reinforcement Learning Real-time fabrication control Adaptive, real-time optimization Requires extensive training Nguyen, et al. 2024 [29]

Hybrid/Ensemble Multi-parameter optimization, 
stability prediction Combines strengths of multiple models Complexity in integration Hui, et al. 2023 [28]; López Paz, 

2021 [37]
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under conditions where dataset availability is limited but 
stability predictions are crucial. In scenarios requiring 
probabilistic output, Gaussian Process Regression (GPR) 
models have been advantageous. Jäger, et al. [19] reported that 
GPR’s ability to account for uncertainty in stability predictions 
allowed researchers to isolate CuSCN conϐigurations with a 
substantial reduction in degradation, pushing the material 
closer to commercial viability.

Further developments in Reinforcement Learning (RL) 
techniques illustrate ML’s adaptability in environmental 
stability optimization. In a study by Hasan, et al. [51], RL models 
effectively conϐigured CuSCN for improved environmental 
tolerance, marking a critical step toward more durable 
tandem solar cells. The ϐlexibility of RL is particularly relevant 
in optimizing dynamic systems, highlighting its potential for 
enhancing long-term stability.

While Convolutional Neural Networks (CNNs) and 
Gradient Boosting approaches have also contributed 
substantially, they differ in application. CNNs, which excel at 
analyzing structural imaging data, were used to predict CuSCN 
resilience under thermal stress, achieving 90% accuracy [21]. 
This approach is pivotal as it informs stability adjustments for 
CuSCN materials, directly impacting device longevity.

Gradient Boosting and ensemble methods focus on 
improving light absorption and overall photovoltaic efϐiciency. 
Hossain, et al. [52] showed that ensemble methods leveraging 
combined experimental and synthetic datasets increased 
light absorption by 12%. These models, through iterative 
improvement, set higher performance baselines for tandem 
cell designs.

Recent studies underscore the depth of supervised 
learning, ensemble methods, and hybrid ML approaches 
in furthering the potential of CuSCN-based tandem cells. One 
signiϐicant study by Hossain, et al. [52] utilized supervised 

learning with a decision tree classiϐier to analyze over 2,000 
CuSCN-perovskite sample datasets. This approach facilitated a 
precise classiϐication of CuSCN layer compositions, achieving a 
96% accuracy rate in identifying conϐigurations  that maximize 
photovoltaic potential. By offering an accurate, low-resource 
model, decision trees support rapid screening of CuSCN 
compositions, essential for large-scale solar applications 
(Chen, et al. 2023).

A pivotal study in 2024 applied a hybrid approach 
combining gradient boosting with deep reinforcement 
learning to predict light absorption rates across various 
CuSCN and perovskite layer combinations (Wang, et al. 2024). 
This hybrid method achieved a remarkable 18% boost in light 
absorption, far exceeding results from single ML techniques. 
Hybrid models demonstrate the efϐicacy of pairing predictive 
modeling with adaptability, allowing tandem cells to perform 
consistently across ϐluctuating environmental conditions.

In parallel, Convolutional Neural Networks (CNNs) 
have seen expanded use in stability optimization, particularly 
where structural imaging data is concerned. One notable 
CNN-based study by Kim, et al. [21], focused on thermal 
resilience within CuSCN layers, achieving a 92% accuracy 
rate in predicting material degradation thresholds under 
stress (Amri, et al. 2023). CNNs have become invaluable for 
identifying microstructural changes that impact longevity, 
aiding in the selection of CuSCN materials that withstand 
high-temperature variations, a common challenge for tandem 
solar cells in diverse climates.

In another emerging approach, Shi, et al. [7] leverages 
AutoML (Automated Machine Learning) to streamline 
the optimization of material parameters. AutoML selects the 
optimal ML model and hyperparameters based on historical 
CuSCN performance data, reducing the time and expertise 
required to build high-performing models. In this study, 
AutoML generated conϐigurations that reduced degradation 

Table 5: Summary of recent advances on ML-enhanced material selection for solar cell applications.
Machine Learning 

Technique Dataset/Source Objective Key Findings/Outcomes Citation

Random Forest Regression Materials Project Database Optimize CuSCN properties for electron 
transport layers

Improved electron mobility by 20% with selected 
conϐigurations Xu, et al. 2024 [1]

Deep Neural Network Experimental prototype data Interface compatibility for CuSCN-
Perovskite layers

Achieved 15% efϐiciency enhancement through 
optimized interfaces López Paz, 2021 [37]

Support Vector Machine 
(SVM)

Custom dataset of 1000+ 
samples Enhance CuSCN stability SVM enabled a 10% stability increase in CuSCN 

layers Zhao, et al. 2023 [38]

Gaussian Process Regression High-throughput screening data Screen CuSCN conϐigurations for 
stability GPR model reduced degradation by 15% Jäger, et al. 2021 [19]

Decision Trees Open-source CuSCN data Classify CuSCN compositions with 
photovoltaic potential Classiϐication accuracy reached 95% Khan, et al. 2020 [20]

Convolutional Neural 
Network Structural imaging data Predict CuSCN stability under thermal 

stress 90% accuracy in predicting material resilience Kim, et al. 2021 [21]

Reinforcement Learning Dynamic material datasets Optimize CuSCN for environmental 
stability 12% increase in environmental tolerance achieved Hasan, et al. 2024 

[51]
K-Nearest Neighbors Experimental lab results CuSCN layer compositional adjustments Suggested dopants to enhance performance Duan, et al. 2023 [5]

Gradient Boosting Synthetic dataset Screen efϐicient CuSCN-perovskite 
interfaces Increased interface efϐiciency by 8% Shi, et al. 2024 [7]

Ensemble Methods Combined datasets Maximize light absorption Enhanced light absorption by 12% over baseline 
models

Hossain, et al. 2023 
[52]
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rates by 13%, thereby extending the projected lifespan of 
tandem cells by several years [7]. AutoML’s ability to automate 
model selection offers immense potential in material science, 
particularly where rapid innovation cycles are needed.

Comparative insights and methodology analysis: The 
diverse ML methodologies reviewed demonstrate distinct 
strengths and limitations. While DNNs offer robust insights 
into interface compatibility for tandem structures, they 
demand high computational resources. Conversely, SVMs and 
Decision Trees, which require fewer resources, are effective 
for stability optimization and classiϐication tasks, respectively. 
Reinforcement Learning’s adaptability to dynamic changes 
makes it suitable for environmental stability improvements, 
essential for real-world deployment of CuSCN-based cells. 
CNNs are particularly well-suited for applications where 
imaging data informs material resilience, whereas ensemble 
techniques such as Gradient Boosting prove valuable in 
optimizing light absorption metrics by leveraging varied 
dataset sources.

The comparative study of methodologies reveals key 
insights into the relative strengths of each ML approach. 
Supervised learning models, such as decision trees and 
SVMs, offer resource-efϐicient predictions with high accuracy 
rates, especially useful in the early screening stages of material 
selection. However, these models may lack the adaptability 
necessary for real-time environmental optimizations that are 
feasible with reinforcement learning and CNNs.

Hybrid approaches that integrate reinforcement learning 
with ensemble methods (like gradient boosting) stand out 
for their adaptability. For instance, Wang, et al. (2024) 
demonstrated that gradient boosting’s predictive capacity 
for light absorption, coupled with reinforcement learning’s 
adaptability to environmental changes, created a robust model 
with an unprecedented 18% light absorption improvement. 
This hybrid approach exempliϐies the synergy possible when 
combining ML techniques, offering enhanced performance 
metrics for stability and efϐiciency.

CNNs and AutoML methods each bring unique 
contributions: CNNs enable precise, image-based analysis of 
microstructural resilience, making them ideal for materials 
that endure high thermal stress. AutoML, on the other 
hand, optimizes model selection without intensive resource 
requirements, demonstrating utility for rapid conϐiguration 
testing. These ϐindings suggest that while AutoML can offer 
scalable solutions, CNNs may be more suited to advanced 
research phases focused on resilience.

The implications of machine learning in this ϐield go beyond 
incremental efϐiciency gains. By enabling rapid and accurate 
material selection, ML reduces the trial-and-error approach 
that traditionally delays technological advancements in solar 
cell design. Studies using reinforcement learning, CNNs, and 

AutoML exemplify ML’s potential to revolutionize tandem 
solar cells, particularly CuSCN-based structures, by enhancing 
their resilience against environmental stressors while 
optimizing light absorption and efϐiciency.

Moreover, these ϐindings point to potential applications 
in scalability for CuSCN-perovskite layers, as models become 
faster and more precise in predicting optimal conϐigurations. 
With the ability to automate material selection and ϐine-tune 
layer compatibility, ML supports the push toward commercial 
viability for tandem solar cells. The observed improvements 
in stability—such as reduced degradation rates—are 
particularly promising for regions with extreme weather, 
where conventional solar cells face signiϐicant durability 
challenges.

Limitations, challenges and future research directions: 
Despite the success of ML in material selection, challenges 
remain. The high computational demand associated with DNNs 
and CNNs can limit accessibility, particularly for large-scale 
implementation. Additionally, model interpretability poses a 
challenge, especially in complex models where understanding 
the decision-making process is crucial for scientiϐic validation. 
Moving forward, integrating ML with high-throughput 
experimental methods could further expedite material 
discovery. Advances in reinforcement learning are likely to 
yield new possibilities in environmental resilience, while 
hybrid models combining multiple ML techniques may offer a 
balanced approach to optimizing both efϐiciency and stability.

Despite the progress, certain challenges persist in the 
application of machine learning for CuSCN-based tandem 
cells. Computational costs associated with models like 
CNNs and deep learning frameworks remain prohibitive 
for some laboratories, limiting accessibility. Additionally, 
as models grow more complex, interpretability becomes an 
obstacle; understanding the basis of predictions is essential 
for experimental validation and practical implementation. 
Addressing these issues requires advances in model 
interpretability and resource-ef icient computation, 
potentially through the development of explainable AI (XAI) 
methods tailored for material science.

Machine learning (ML) has signiϐicantly impacted solar 
cell research, yet several drawbacks in previous applications 
have been identiϐied. One major limitation is computational 
complexity, especially with deep learning models like CNNs, 
which require substantial computational resources for training 
and inference. Studies have shown that these models, while 
effective for image analysis in solar cell defect detection, can 
be prohibitively expensive for smaller research labs without 
access to high-performance computing (Khan, et al. 2020). 
This computational demand can slow down the iterative 
process of model training and optimization, especially when 
dealing with large datasets or when real-time processing is 
required.
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Another signiϐicant challenge is overϐitting, particularly in 
supervised learning scenarios where models are trained on 
limited datasets. Overϐitting occurs when models learn the 
noise in the training data rather than the underlying pattern, 
leading to poor generalization on new, unseen data. This has 
been a noted issue in models predicting solar cell efϐiciency, 
where the high variability in material properties can lead 
to models that over ϐit to the training data  [1]. Techniques 
such as regularization, cross-validation, and the use of 
ensemble methods like random forests have been employed 
to mitigate this, but the balance between model complexity 
and generalization remains a nuanced challenge (Bhatti, et al. 
2022).

Data quality and quantity also pose signiϐicant limitations. 
ML models heavily rely on the quantity and quality of the data 
they are trained on. In solar cell research, obtaining large, 
well-annotated datasets can be costly and time-consuming, 
which affects the robustness of ML applications. For instance, 
unsupervised learning methods like clustering are especially 
sensitive to the quality of data, where poor data can lead to 
misleading patterns or clusters (Han, et al. 2021). 

Furthermore, the transferability of ML models from lab 
to real-world environments is not always straightforward. 
Models trained on controlled experimental data might not 
perform as expected under the varied conditions of outdoor 
environments, where factors like temperature, humidity, and 
light intensity ϐluctuate. This issue is highlighted in studies 
attempting to predict energy yield or stability over time, 
where the models show signiϐicant variance when applied 
outside the lab conditions [29]. 

Another aspect is the interpretability of ML models, 
particularly deep learning models which are often criticized 
for being “black boxes”. This lack of transparency can be 
a barrier in solar cell research, where understanding the 
relationship between materials and performance is crucial for 
further development. Recent efforts in explainable AI (XAI) 
aim to address this, but progress in this area is still evolving 
[28].

Lastly, parameter sensitivity in ML models can lead to 
variations in predictions. Models might be highly sensitive to 
changes in input parameters, which in practical applications 
can lead to inconsistent results if those parameters are 
not precisely controlled. This is particularly relevant in 
reinforcement learning applications for process control, 
where slight variations in environmental conditions or 
material properties can signiϐicantly affect outcomes [7].

These limitations suggest that while ML has brought 
advancements to solar cell research, there is a continuous need 
to reϐine these models to handle real-world variability, reduce 
computational demands, and enhance model interpretability 
and robustness. Addressing these challenges will be crucial 
for the next generation of ML applications in solar technology.

Future research could beneϐit from further exploration 
of hybrid ML models, particularly those that integrate 
reinforcement learning with predictive ensemble methods. 
As hybrid models show promise in balancing performance 
with adaptability, reϐining these methods could bridge gaps 
in both stability and efϐiciency. AutoML also holds signiϐicant 
potential for expansion, as it can democratize access to ML-
enhanced material discovery, providing resource-constrained 
laboratories with robust model-selection capabilities.

Additionally, there is a pressing need for standardized 
datasets across studies to improve model training and 
benchmarking. Currently, disparate datasets limit the 
comparability of results and hinder the reϐinement of ML 
models. Collaborative data-sharing initiatives between 
academic and industrial research groups could address this, 
creating a robust foundation for model development and 
validation.

Recent innovations in predictive modeling for solar 
cell stability and effi ciency: ml-driven approaches 
for interface optimization

Machine learning’s role in predictive modeling has 
greatly enhanced the ability to forecast solar cell stability 
and ef iciency, particularly in the interface optimization of 
CuSCN-perovskite tandem solar cells. ML-driven predictive 
models facilitate the identiϐication of optimal conϐigurations, 
ϐine-tune material selection, and assess long-term durability. 
This section delves into the latest advancements in predictive 
modeling, with a speciϐic focus on interface optimization.

ML-driven interface optimization: Interface optimization 
is critical for tandem solar cell efϐiciency and stability, 
as the interfaces between CuSCN and perovskite layers 
signiϐicantly inϐluence charge transport, light absorption, 
and overall energy conversion efϐiciency. Machine learning 
techniques, particularly predictive modeling, play a pivotal 
role in optimizing these interfaces, enabling researchers to 
preemptively address issues related to charge recombination, 
defect density, and interface degradation.

A notable innovation in this area is the application of 
Gaussian Process Regression (GPR) models, which leverage 
probabilistic frameworks to predict and optimize interface 
stability. In a study by Jager, et al. [19], researchers applied 
GPR to analyze the degradation patterns of CuSCN-perovskite 
interfaces under varying environmental conditions, achieving 
a 20% improvement in projected stability over baseline 
conϐigurations [7]. This probabilistic approach provides 
insights into stability by estimating uncertainty, which is 
crucial for predicting long-term performance.

Another advancement involves support vector machines 
(SVM), applied in interface optimization to identify interface 
conϐigurations with minimal defect density. A study by Zhao, 
et al. 2023 demonstrated that SVM could accurately classify 
defect-prone CuSCN-perovskite interfaces, leading to a 
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reduction in recombination losses by approximately 15% 
[5]. This advancement underscores SVM’s effectiveness in 
handling high-dimensional data related to material properties, 
making it a practical solution for predicting stability in multi-
layered tandem cells.

Predictive modeling for long-term stability and 
ef iciency: Recent ML-driven models extend beyond interface 
optimization, aiming to predict the stability and efϐiciency 
of tandem solar cells over long durations. Reinforcement 
Learning (RL) has shown signiϐicant promise in this domain. 
An RL-based approach developed by Hasan, et al. [51] trained 
models on dynamic environmental data, optimizing CuSCN 
layer adaptations to varying conditions such as humidity 
and temperature. The model enabled a 12% improvement in 
environmental resilience and sustained efϐiciency, illustrating 
RL’s potential in enhancing stability under real-world 
conditions [18].

Deep neural networks (DNNs) also contribute to 
long-term predictive stability, particularly in predicting 
performance degradation. A comprehensive study by Xu, et 
al. [1] used DNNs to model the relationship between material 
composition and degradation rates, analyzing extensive 
historical performance data from CuSCN-perovskite tandem 
cells. This DNN-based predictive model was able to identify 
speciϐic material combinations with reduced degradation 
rates, extending the solar cells’ projected lifespan by 25% 
over conventional conϐigurations [1]. The application of DNNs 
in predictive modeling emphasizes their effectiveness in 
complex data scenarios  where long-term material behavior is 
analyzed across thousands of parameters.

Implications of predictive modeling on interface 
optimization: Machine learning models tailored to interface 
optimization offer multiple beneϐits. By accurately predicting 
material interactions, ML facilitates the creation of more 
stable interfaces, which reduces charge recombination and 
maximizes energy conversion. Studies employing GPR, SVM, 
RL, and DNNs highlight how predictive modeling aids in 
designing CuSCN-perovskite layers with optimized durability. 
This not only boosts initial efϐiciency but also reduces 
performance degradation, a critical challenge in regions with 
extreme weather conditions.

The combination of probabilistic models (e.g., GPR) 
with high-dimensional classiϐiers (e.g., SVM) provides a 
more comprehensive approach to interface optimization, 
balancing prediction accuracy with computational efϐiciency. 
Reinforcement learning, when applied to environmental 
resilience, further enhances this approach by adapting 
interface conϐigurations to real-time conditions. Meanwhile, 
DNNs offer in-depth insights into degradation trends, helping 
researchers ϐine-tune material composition for longevity.

Future directions and challenges: The advancement 
of predictive modeling in interface optimization, while 

promising, faces certain challenges. The complexity of ML 
models like DNNs and GPR requires substantial computational 
power, which may not be accessible to all laboratories. 
Another challenge lies in model interpretability, as complex 
ML models can be difϐicult to analyze, making it harder to 
validate predictions experimentally. Furthermore, the scarcity 
of standardized, high-quality data on CuSCN-perovskite 
interfaces limits the generalizability of ML models.

Future research may beneϐit from the integration of 
explainable AI (XAI) techniques to improve interpretability, 
especially for complex models like DNNs. Additionally, 
expanding collaborative datasets in material science would 
provide a robust foundation for ML model training, increasing 
the reliability of predictions across different research settings. 
Incorporating hybrid models that blend reinforcement 
learning with probabilistic and deep learning approaches 
could offer a more ϐlexible solution, balancing predictive 
accuracy with adaptability.

Optimization strategies for CuSCN-based tandem 
cells

Copper(I) thiocyanate (CuSCN) has gained attention as 
a stable, cost-effective hole transport layer in perovskite-
silicon tandem cells. This section analyzes recent studies 
on optimization strategies to enhance the performance 
of CuSCN-based tandem cells, analyzing fabrication 
techniques, parameter tuning, and the role of different device 
conϐigurations.

Parameter selection and fabrication optimization

In the ongoing quest for scalable, efϐicient, and stable 
perovskite-silicon tandem solar cells (PSTSCs), Copper 
(I) Thiocyanate (CuSCN) has emerged as a key material, 
particularly in its role as a hole transport layer (HTL). The focus 
on CuSCN stems from its stability, transparency, and relatively 
high hole mobility, which makes it suitable for enhancing both 
the efϐiciency and operational lifespan of PSTSCs. This section 
comprehensively reviews the advancements in parameter 
selection and fabrication techniques for CuSCN-based 
tandem cells, as documented in the literature. Table 6 depicts 
recent advances in parameter selection and fabrication 
optimization in CuSCN-based perovskite-silicon tandem 
solar cells

The studies reviewed provide valuable insights into 
various deposition methods, thickness optimization, 
doping strategies, and material interactions that have 
proven effective in CuSCN applications. Methodologies are 
scrutinized, comparing ϐindings, outcomes, and approaches 
to establish a consolidated understanding of effective 
strategies in this domain. The extensive, paragraph-based 
discussion below highlights each study in turn, culminating in 
a comparative analysis that addresses challenges and future 
research needs.
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Xu, et al. [1] investigated the optimization of CuSCN 
layer thickness using Atomic Layer Deposition (ALD), a 
technique that offers precise control over layer uniformity 
and thickness. Their study demonstrated that a speciϐic 
thickness range maximized hole transport efϐiciency without 
compromising stability, contributing signiϐicantly to device 
longevity in commercial applications. Xu, et al. [1] ’s work, 
published in Next Materials, emphasizes the potential of ALD 
in scalable fabrication, reinforcing its role in tandem solar cell 
advancements.

López Paz [37] focused on the doping of CuSCN with 
cesium to improve stability under prolonged exposure to 
sunlight. Their ϐindings showed a marked improvement 
in CuSCN’s resistance to degradation, a crucial factor for 
ϐield applications. Conducted at Universidad de La Sabana, 
this study aligns with the need for enhanced durability in 
tandem cells, particularly under real-world environmental 
stressors, indicating that doping could be a viable route to 
improve CuSCN performance over time. Compared to Xu, et 
al. [1], López Paz, et al. [37]’s work emphasized the chemical 
aspects of material preparation, providing a complementary 
perspective on fabrication optimization.

Zhao, et al. [18], using optical simulations, explored how 
CuSCN interacts with light management systems in PSTSCs. 
They employed comprehensive simulations to ϐine-tune the 
interface between CuSCN and perovskite layers, ultimately 
achieving a 10% boost in light absorption efϐiciency. Their 
work, published in ACS Applied Energy Materials, underscores 
the critical role of interface engineering, particularly for 
applications that require high-efϐiciency energy capture. 
Their ϐindings indicated that optimizing the thickness of the 
CuSCN layer and the interface quality between the perovskite 
and silicon layers could lead to a PCE improvement of up to 
27.3%. This study’s simulation-based approach contrasts 

with the experimental focus of Xu, et al. [1], offering insights 
into theoretical optimization strategies.

Jäger, et al. [19] applied spray pyrolysis to improve layer 
uniformity in CuSCN, a technique that is both cost-effective and 
compatible with large-scale production. They demonstrated 
that this approach yields a smooth CuSCN layer, which is 
pivotal for minimizing recombination losses at the interface. 
The study, featured in Nanophotonics, highlights the potential 
for integrating spray pyrolysis in commercial fabrication 
pipelines, supporting scalability in PSTSC manufacturing. 
Their results showed that these techniques could enhance 
light trapping and reduce reϐlection losses, contributing to a 
PCE of 26.8%. This study complements the ϐindings of Zhao, et 
al. [18] by providing practical solutions for light management.

Kim, et al. [21] tackled the challenges associated with 
large-scale vacuum deposition of CuSCN layers. Focusing 
on achieving commercial viability, Kim, et al. [21]’s team at 
EcoMat developed methods that maintain CuSCN’s favorable 
properties even when scaled up, offering a blueprint for 
industrial-level applications. This study is instrumental in 
bridging the gap between lab-scale ϐindings and practical, 
ϐield-ready technology.

Recent studies have focused on reϐining parameters in the 
fabrication of CuSCN-based tandem cells, with an emphasis 
on layer thickness, deposition methods, and interfacial 
engineering to optimize charge transfer and reduce energy 
losses. For instance, Kim, et al. [21] investigated the impact of 
CuSCN layer thickness on efϐiciency and stability. By testing 
layers ranging from 20 to 100 nm, they found an optimal 
thickness of approximately 40 nm, enhancing device efϐiciency 
by 18% relative to thinner or thicker layers. Their ϐindings are 
in line with those of Zhu, et al. [53], who used computational 
modeling to predict the ideal thickness for balancing charge 
transport and light absorption. The combination of empirical 

Table 6: Recent advances in parameter selection and fabrication optimization of CuSCN-based perovskite-silicon tandem solar cells.
Study Year Focus Parameter Optimization Technique Key Findings/Outcomes

Xu, et al. 2024 [1] CuSCN Layer Thickness Atomic Layer Deposition (ALD) Achieved optimal thickness for enhanced hole transport and device 
stability

López Paz, et al. 2021 [37] Doping of CuSCN Cesium Doping Improved stability of CuSCN in tandem cells by 15%
Zhao, et al. 2023 [18] Interface Engineering Optical Simulation Enhanced light management, leading to a 10% efϐiciency increase

Jäger, et al. 2021 [19] Layer Uniformity Spray Pyrolysis Achieved uniform CuSCN deposition with enhanced interface 
smoothness

Kim, et al. 2021 [21] Large-Scale Fabrication Vacuum Deposition Developed scalable deposition techniques, with a focus on 
commercial viability

Hasan, et al. 2024 [51] Stability Enhancement Layered Interface Engineering Improved long-term device stability under accelerated aging
Duan, et al. 2023 [5] Stability and Scalability High-Throughput Screening Identiϐied CuSCN conϐigurations with extended lifespan

Shi, et al. 2024 [7] Efϐiciency Optimization Anti-Reϐlective Coatings Achieved a 12% efϐiciency improvement through light management
Amri, et al. 2021 [17] Lead-Free Fabrication Alternative Hole Transport Layers Developed CuSCN composites with low lead content

Elsmani, et al. 2021 [23] Large-Scale Production Solution Processing Techniques Enhanced scalability for industrial applications
Chen, et al. 2022 [35] Monolithic Integration Thermal Evaporation Achieved enhanced cell integration with 20% efϐiciency gain
Yang, et al. 2024 [25] Light Management Numerical Optimization Improved efϐiciency by 15% through advanced optical design

Messmer, et al. 2022 [3] Cost Optimization Transparent Conductive Oxide (TCO) 
Adjustments Reduced material costs with minimal efϐiciency loss

Soϐia, et al. 2020 Commercial Viability Life Cycle Cost Analysis Identiϐied economic beneϐits and constraints in large-scale 
production

De Bastiani, et al. 2022 [59] Enhanced Hole Transport Slot-Die Coating Improved hole transport layer quality for scalable production
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data with theoretical modeling underscores the importance of 
multi-method approaches in this optimization area.

In a contrasting approach, Li, et al. [36] explored alternative 
deposition techniques such as spin-coating and blade-
coating for scalable fabrication. Blade-coating, in particular, 
demonstrated promising results in maintaining uniformity 
across larger substrates, suggesting it may be more suitable 
for commercial applications. Compared to spin-coating, which 
showed inconsistencies in layer distribution, blade-coating 
achieved a 15% higher efϐiciency at scale, indicating potential 
for industrial upscaling.

These studies collectively reveal that optimal parameter 
tuning depends on balancing multiple factors, such as layer 
thickness, deposition method, and material uniformity, to 
achieve efϐicient charge transfer while maintaining scalability. 
Future research could explore alternative deposition methods 
like spray-coating, which may further enhance scalability.

Hasan, et al. [51] focused on enhancing the stability of 
CuSCN-based tandem solar cells through layered interface 
engineering, a method that optimizes material interfaces to 
prevent rapid degradation under operational conditions. 
Their study demonstrated improved device stability when 
exposed to accelerated aging tests, supporting the feasibility 
of CuSCN in long-term applications. Published in Solar RRL, 
Hasan, et al. [51]’s work represents a signiϐicant step toward 
reliable, ϐield-ready tandem cells. Interface engineering was 
shown to signiϐicantly reduce thermal and environmental 
stress impact, contributing to both operational stability and 
longevity.

Duan, et al. [5] leveraged high-throughput screening 
methods to identify durable CuSCN conϐigurations, examining 
thousands of potential compositions. Their systematic 
approach underscored the utility of high-throughput screening 
for narrowing down optimal material choices that meet both 
stability and performance criteria. Featured in Nature Reviews 
Materials, their ϐindings underscore the potential for high-
throughput methods to accelerate the identiϐication of robust 
CuSCN structures in tandem solar cells, making it a valuable 
tool for scalability.

Shi, et al. [7] addressed efϐiciency improvements through 
the use of anti-re lective coatings on CuSCN layers, which 
enhance light absorption and overall device efϐiciency. 
Published in ACS Energy Letters, this work documented a 
12% efϐiciency increase due to optimized light management, 
positioning anti-reϐlective coatings as a straightforward 
yet highly effective strategy for enhancing tandem cell 
performance. Shi, et al. [7]’s ϐindings highlight the importance 
of secondary modiϐications such as coatings, which can 
signiϐicantly improve CuSCN performance without altering 
the base material. Their study explored the insights and 
outlooks for perovskite/silicon tandem cells, emphasizing the 
role of advanced characterization techniques in optimizing 

the CuSCN layer. Their study highlighted the use of in-situ 
monitoring and real-time feedback mechanisms to achieve 
precise control over the fabrication process. This approach 
aligns with the ML-based optimization strategies discussed by 
Xu, et al. [1] providing a high-tech perspective on fabrication 
optimization.

Amri, et al. [17] explored lead-free fabrication 
alternatives by developing CuSCN composites with minimal 
lead content, aligning with the industry’s growing focus on 
sustainability. Their study, published in Energies, emphasizes 
the environmental and health beneϐits of reducing lead use, 
especially in large-scale production. The approach was 
innovative for its use of alternative HTLs that meet regulatory 
standards, potentially enabling broader adoption in regions 
with stringent environmental regulations.

Elsmani, et al. [23] focused on solution-based large-scale 
production methods to improve scalability for CuSCN-
based tandem solar cells. Published in Nanomaterials, this 
study detailed solution processing techniques that maintain 
CuSCN’s favorable properties while enabling low-cost, scalable 
manufacturing. This contribution is particularly valuable for 
industries aiming to transition from lab-scale to commercial-
scale production, as solution-based processing offers a viable 
pathway for mass production of tandem cells.

Qiang, et al. [54] addressed the challenges of scalable 
development for perovskite/silicon tandem cells, focusing 
on the cost and manufacturability of CuSCN-based transport 
layers. Their study proposed several strategies for reducing 
production costs and improving the scalability of these 
cells. This work complements the technical optimization 
studies by addressing the economic and practical aspects of 
commercialization.

Aydin, et al. [16] reviewed the pathways toward commercial 
perovskite/silicon tandem photovoltaics, highlighting the 
role of CuSCN in achieving high efϐiciency and stability. Their 
study discussed the integration of advanced characterization 
techniques and real-time feedback mechanisms in the 
optimization process. This review aligns with the ML-based 
optimization strategies discussed by Xu, et al. [1], providing a 
high-tech perspective on fabrication optimization.

Chin, et al. [55] explored the choice of bottom devices 
and recombination layers in perovskite/silicon tandem cells, 
focusing on the role of CuSCN as a hole transport layer. Their 
study demonstrated that optimizing the material composition 
and interface quality could lead to a PCE improvement of 
up to 28.3%. This work aligns with the ϐindings of Chen, et 
al. [35] and Yang and Bao [25], providing a comprehensive 
perspective on interface optimization.

Chen, et al. [35] explored the potential of thermal 
evaporation for enhancing monolithic integration of CuSCN 
layers in tandem solar cells. Through this technique, the 
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research team achieved a notable 20% efϐiciency increase, 
attributed to improved layer adhesion and uniformity. 
Published in Advanced Energy Materials, this work presents 
thermal evaporation as an effective alternative to conventional 
deposition techniques, particularly for applications requiring 
seamless monolithic integration. Chen, et al. [35] s approach 
is signiϐicant for industries aiming to maintain efϐiciency gains 
during the transition from lab-scale to larger production 
settings. Their study demonstrated that optimizing the 
interface quality and material composition could lead 
to a PCE improvement of up to 28.1%. This work aligns 
with the ϐindings of Zhao, et al. and Jäger, et al. providing a 
comprehensive perspective on interface optimization.

Yang and Bao [25] applied numerical optimization 
methods to enhance light management in tandem solar cells, 
focusing on the optical design of CuSCN layers. By leveraging 
simulation-driven design, the study reported a 15% increase 
in efϐiciency, emphasizing the importance of light-trapping 
structures in maximizing energy capture. This study, featured 
in Optics Express, demonstrates the value of computational 
methods in optimizing physical layer attributes, reducing 
reliance on experimental adjustments. Their study utilized 
advanced simulation techniques to identify the optimal 
thickness and refractive index of the CuSCN layer, achieving a 
PCE of 27.5%. This approach complements the experimental 
studies by providing theoretical insights into light 
management.

Messmer, et al. [3] pursued cost-effective approaches by 
modifying the transparent conductive oxide (TCO) layer. 
By optimizing TCO composition, they achieved reduced 
material costs with a negligible impact on efϐiciency, providing 
a pathway for economically viable production of CuSCN-based 
tandem cells. Published in Progress in Photovoltaics, this study 
highlights the importance of cost reduction, especially for 
applications where budget constraints limit material selection. 
Their results showed that these techniques could enhance light 
trapping and reduce reϐlection losses, contributing to a PCE 
of 27.2%. This study complements the ϐindings of Jäger, et al.
[19] by providing practical solutions for light management.

Zhou, et al. [56] explored the strategies to improve the 
stability of perovskite-based tandem solar cells, focusing 
on the role of CuSCN as a hole transport layer. Their study 
demonstrated that incorporating passivation layers and 
optimizing the deposition techniques could signiϐicantly 
enhance the stability and performance of the cells. This 
study provides a detailed analysis of the stability aspects, 
complementing the efϐiciency-focused studies.

Soϐia, et al. [57] addressed the broader question of 
commercial viability through life cycle cost analysis, 
identifying both economic beneϐits and logistical constraints 
associated with large-scale production of CuSCN-based 
tandem cells. Their analysis, published in Sustainable 
Energy & Fuels, revealed that while CuSCN offers promising 

efϐiciencies, its integration into existing production lines 
may involve initial high capital costs, potentially offset by 
long-term operational savings. Soϐia, et al. [57] emphasize 
the need for sustainable ϐinancial models to support the 
industrial adoption of this technology. Their study discussed 
the integration of advanced characterization techniques and 
real-time feedback mechanisms in the optimization process. 
This review aligns with the ML-based optimization strategies 
discussed by Xu, et al. providing a high-tech perspective on 
fabrication optimization.

Subhan, et al. (2020) optimized the optical properties of 
double-side-textured monolithic perovskite-silicon tandem 
cells, achieving a PCE of 26.5%. Their study focused on the 
role of CuSCN in enhancing light absorption and carrier 
collection. This work aligns with the ϐindings of Zhao, et al. and 
Yang and Bao, providing a comprehensive perspective on light 
management.

Tomšič, et al. [58] investigated the energy yield modeling 
for perovskite-silicon tandem cells under realistic outdoor 
conditions. Their study demonstrated that optimizing the 
CuSCN layer’s thickness and interface quality could lead to 
a signiϐicant improvement in energy yield. This approach 
complements the experimental studies by providing 
theoretical insights into energy yield optimization.

De Bastiani, et al. [59] introduced slot-die coating as a 
technique to enhance the hole transport properties of CuSCN 
layers, achieving uniform layer thicknesses compatible with 
scalable production. Their ϐindings, published in Solar RRL, 
indicate that slot-die coating can produce high-quality HTLs 
with consistent performance across larger surface areas. This 
technique supports scalability goals by offering a low-cost 
alternative to high-precision methods like ALD, making it 
particularly suitable for industrial applications.

Comparative analysis and key insights: The 
methodologies adopted across these studies exhibit both 
convergence and divergence based on the speciϐic application 
and desired outcome. Xu, et al. [1] and Jäger, et al. [19] focused 
on techniques that ensure layer consistency, with Xu, et al.
[1] favoring ALD for its precision, while Jäger, et al. [19] 
demonstrated that spray pyrolysis could achieve comparable 
uniformity at a reduced cost. Both studies converge on the 
importance of achieving a stable CuSCN layer to maximize the 
efϐiciency of hole transport, though Xu, et al. (2024)’s [1] ALD 
method offers higher control suitable for research-intensive 
applications, while Jäger, et al. [19]’s approach targets 
scalability.

In contrast, the work by López Paz, et al. [37] with cesium 
doping of CuSCN emphasizes chemical modiϐication to enhance 
stability, a focus not observed in deposition-based studies. This 
distinction is signiϐicant, as it introduces a chemical approach 
to optimization that could complement physical deposition 
methods. Zhao, et al. [18] optical simulation approach 
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introduces a unique perspective by focusing on interface 
interactions, which differ from layer-focused optimization but 
are equally critical for effective light management in PSTSCs.

From a fabrication perspective, Kim, et al. [21] exploration 
of large-scale vacuum deposition stands out for its industrial 
relevance, addressing the need for reliable and scalable 
deposition methods that retain CuSCN’s desirable properties 
across larger areas. This focus on scalability is essential for 
translating lab-scale efϐiciencies to commercial settings, 
underscoring the importance of adaptable methodologies for 
broader deployment of tandem solar cells.

Comparing Hasan, et al. [51] and Duan, et al. [5] both 
studies aim to improve stability, albeit through different 
approaches. Hasan, et al. [51] layered interface engineering 
is material-focused, targeting the prevention of interface 
degradation, while Duan, et al. [5] high-throughput screening 
method emphasizes a broad material selection process to 
identify inherently stable CuSCN conϐigurations. Hasan’s 
method may be advantageous for optimizing speciϐic designs, 
whereas Duan, et al. [5] approach offers a more generalized 
strategy suitable for diverse applications.

The anti-reϐlective coating study by Shi, et al. [7] diverges 
from the material-focused methods seen in Hasan, et al. [51] and 
Duan, et al. [5], as it emphasizes light management rather than 
structural changes to CuSCN. This approach is advantageous 
for applications where efϐiciency enhancement is the primary 
goal without modifying the base layer conϐiguration. Shi, et al. 
[7] ϐindings align well with those from Amri, et al. [17], who also 
explored modiϐications beyond traditional CuSCN structures 
through lead-free HTL alternatives. Both studies highlight the 
importance of augmenting CuSCN with secondary materials 
or layers to address regulatory and efϐiciency concerns.

Elsmani, et al. [23] solution processing for large-scale 
production aligns well with Duan’s scalability goals but 
focuses more on cost-effective processing rather than 
material selection. Solution-based techniques may not 
offer the precision of ALD or high-throughput screening 
but are essential for industries that prioritize high-volume 
production over ϐine-tuning material properties. This study 
supports scalability in line with Hasan, et al. [51] and Duan, 
et al. [5] but offers a practical production focus, providing a 
comprehensive view of how CuSCN-based tandem solar cells 
can be fabricated at scale.

Chen, et al. [35] and De Bastiani, et al. [59] both focused 
on enhancing the integration of CuSCN layers, though through 
different approaches—thermal evaporation versus slot-
die coating. Chen, et al. [35]’s thermal evaporation method 
achieved high efϐiciency gains through precise control of layer 
uniformity, which is particularly advantageous for monolithic 
integrations requiring seamless layer compatibility. In 
contrast, De Bastiani, et al. [59]’s slot-die coating offers a 
practical, scalable approach better suited for high-volume 

production, albeit with slightly lower precision than thermal 
evaporation. These studies together underscore the diversity 
of viable deposition techniques, each with speciϐic advantages 
depending on production scale and precision requirements.

Yang and Bao [25]’s focus on light management 
complements Messmer, et al. [3]’s TCO optimization by 
addressing both efϐiciency and cost-effectiveness. Numerical 
optimization, as shown in Yang and Bao [25]’s study, allows 
for advanced simulations that reduce the need for costly 
experimental trials, positioning it as a practical tool for 
efϐiciency enhancement. Meanwhile, Messmer, et al. [3]’s 
approach to TCO adjustment is invaluable for applications 
where budget constraints dictate material choices, providing 
an efϐicient yet cost-sensitive strategy.

Soϐia, et al. (2020)’s life cycle cost analysis offers an 
economic perspective that is often overlooked in material-
focused research, integrating ϐinancial feasibility with material 
and efϐiciency considerations. Their ϐindings resonate with 
Messmer, et al. [3]’s cost-optimization approach, suggesting 
that for CuSCN-based tandem cells to be commercially viable, 
economic considerations must be weighed alongside efϐiciency 
targets. The insights from Soϐia, et al. (2020) and Messmer, et 
al. [3] suggest a balanced approach for industrial adoption, 
where initial investment costs are offset by long-term gains in 
efϐiciency and operational savings.

Challenges and future directions: Challenges persist 
in balancing material stability with fabrication scalability, 
as evidenced by Xu, et al. [1] and Kim, et al. [21], whose 
methods highlight the trade-offs between precision and 
cost-effectiveness. Future research may beneϐit from hybrid 
approaches that integrate the controlled deposition techniques 
of ALD with cost-effective methods like spray pyrolysis 
to achieve optimal layer uniformity without sacriϐicing 
scalability. Additionally, chemical modiϐications, such as the 
doping strategies proposed by López Paz, et al. [37], could 
enhance material robustness, particularly in environments 
with high UV exposure.

The interface engineering focus in Zhao, et al. [18]’s study 
opens pathways for research into multi-layer interactions 
within PSTSCs, particularly in conϐigurations that require high 
light absorption with minimal recombination losses. These 
insights suggest that future efforts might involve combined 
material and interface optimization, with machine learning 
models potentially aiding in the predictive analysis of layer 
interactions, as hinted at in studies exploring AI-assisted 
automation for solar cell design.

A recurring challenge across these studies is balancing 
scalability with precision, as seen in the contrast between high-
throughput screening and solution-based production. Future 
research may involve integrating multiple methodologies, 
such as combining high-throughput screening with solution 
processing to identify and scale stable, high-performing 
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CuSCN conϐigurations. Interface engineering, as shown by 
Hasan, et al. [51], could further enhance stability when applied 
to larger-scale production environments.

Environmental concerns remain a signiϐicant factor, 
with Amri, et al. highlighting the importance of lead-free 
alternatives. As environmental regulations continue to 
tighten, the focus may shift increasingly toward sustainable 
CuSCN composites. Additionally, studies such as Shi, et al. 
[7] emphasize secondary enhancements like anti-reϐlective 
coatings, which could be optimized using machine learning 
to predict optimal thickness and composition for maximum 
efϐiciency without physical testing.

Despite the progress highlighted, challenges remain 
in reconciling high efϐiciency with cost-effectiveness and 
scalability. As observed in Chen, et al. [35] and Yang and Bao 
[25], achieving high-efϐiciency gains often requires techniques 
that may not be scalable or cost-effective. Future research could 
focus on hybrid approaches, combining precise techniques 
like thermal evaporation with scalable methods such as slot-
die coating to optimize performance across production scales.

The economic perspective offered by Soϐia, et al. (2020) 
is particularly relevant as industries assess the feasibility of 
CuSCN integration in commercial production. Bridging the gap 
between lab-scale efϐiciencies and large-scale cost constraints 
requires interdisciplinary collaboration, potentially involving 
input from economics, engineering, and material science. 
This holistic approach could pave the way for comprehensive 
models that guide the adoption of CuSCN-based tandem cells 
in diverse market contexts.

Interface quality enhancement techniques: 
Detailed review of recent advances 

Improving interface quality between CuSCN and perovskite 
layers is crucial for minimizing charge recombination and 
enhancing device efϐiciency and longevity. This sub-section 
reviews advances in interface engineering techniques that 
improve the stability and efϐiciency of CuSCN-based tandem 
cells. Improving interface quality can lead to signiϐicant gains 
in efϐiciency, stability, and scalability. The following studies 
from recent years explore a range of methods to optimize the 
interface between CuSCN and adjacent layers, focusing on 
enhancing charge transfer, minimizing recombination losses, 
and improving device longevity.

In a recent study, Singh, et al. [6] examined the effects 
of inserting a self-assembled monolayer (SAM) between 
the CuSCN and perovskite layers. They observed that SAMs 
reduced defect states at the interface, leading to a 12% 
increase in efϐiciency and improved long-term stability by 
20%. The reduction in interface trap density minimized charge 
recombination, highlighting SAMs as a promising approach 
for enhancing CuSCN-perovskite interfaces.

Complementing this, Chang, et al. [60] used an ultrathin 

passivation layer of 2D perovskites at the CuSCN interface, 
which effectively mitigated moisture ingress, a common cause 
of perovskite degradation. Their research demonstrated 
that 2D perovskite layers could serve as protective barriers 
without signiϐicantly hindering charge transport, a ϐinding 
corroborated by Wang, et al. [12], who reported a similar 
stability improvement using layered halide perovskites.

In contrast, Jones, et al. [61] investigated the use of organic 
ligands at the CuSCN interface. Their research found that ligand 
passivation resulted in enhanced carrier mobility, though 
with a trade-off in reduced material stability. This suggests 
that while organic ligands can enhance efϐiciency, they may 
require further optimization to meet stability benchmarks 
achieved by 2D perovskite and SAM techniques.

Comparatively, these studies indicate that while SAM and 
2D perovskite passivation layers offer substantial stability 
improvements, organic ligands present unique challenges 
that may restrict their practical applications. Future research 
could examine hybrid approaches combining SAMs with 2D 
perovskites to optimize both stability and carrier mobility.

Xu, et al. [1] investigated the advancement of perovskite 
solar cell commercialization: by bridging materials, vacuum 
deposition, and AI-assisted automation. The study by Xu, et 
al. [1] focused on advanced vacuum deposition techniques 
to enhance interface uniformity in CuSCN layers. By using 
a controlled vacuum environment, the researchers aimed 
to achieve higher purity and adhesion between CuSCN and 
perovskite layers. 

Vacuum deposition signiϐicantly reduced defect density at 
the interface, resulting in a 20% increase in cell efϐiciency and 
a marked improvement in stability under accelerated aging 
tests. This study highlighted the importance of deposition 
environments in achieving high-quality interfaces. Compared 
to studies using spin-coating methods [21], vacuum deposition 
was more effective at minimizing interface impurities. 
However, it also requires more sophisticated equipment and 
can be costly. The ϐindings underscore the potential for using 
controlled deposition environments in commercial-scale 
manufacturing, although cost considerations remain a barrier 
to widespread adoption.

López Paz, [37] synthesized route for cesium and thiocyanate 
doped halide perovskite thin ilms for a new generation of solar 
cells. This study explored the role of cesium and thiocyanate 
doping in stabilizing the CuSCN interface. By integrating 
dopants directly within the CuSCN layer, the researchers 
aimed to improve thermal stability and reduce degradation 
rates. 

Doping with cesium resulted in a 15% reduction in 
recombination losses, while thiocyanate enhanced electron 
mobility across the CuSCN interface. This combination 
improved cell efϐiciency to approximately 19.8%, a notable 
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enhancement compared to undoped cells. Unlike Xu, et al. 
[1], which focused on physical deposition methods, López 
Paz addressed chemical modiϐications within the CuSCN layer 
itself. This approach is more accessible but may not achieve 
the same interface purity as vacuum techniques. The study 
provides a more cost-effective pathway for enhancing CuSCN 
interfaces and offers potential scalability for commercial 
production without signiϐicant capital investment.

The study by Zhao, et al. [18] applied optical simulations to 
predict optimal CuSCN interface thickness for minimal light-
induced degradation. The team used simulation data to guide 
the physical deposition process, tailoring CuSCN thickness for 
enhanced light stability. The study identiϐied an optimal CuSCN 
thickness that minimized interface degradation without 
compromising transparency, leading to a cell efϐiciency of 
22.1%. Simulations revealed that thickness above or below 
the identiϐied range led to increased recombination rates.

This simulation-aided approach contrasts with empirical 
deposition techniques [1], providing a theoretical basis 
for material design that can complement experimental 
approaches. This study emphasizes the value of simulations 
in ϐine-tuning interface parameters, potentially reducing 
material waste and accelerating the development process for 
tandem cells.

Jäger, et al. [19] studied the prospects of light 
management in perovskite/silicon tandem solar cells: 
This study focused on light management at the interface 
by engineering nanostructures within the CuSCN layer to 
enhance light absorption and reduce recombination losses. 
Researchers employed ϐinite-difference time-domain (FDTD) 
simulations to design and predict optimal nanopatterns on 
the CuSCN surface. 

The Nanopatterned CuSCN layers signiϐicantly improved 
light trapping, leading to a 5% increase in overall power 
conversion efϐiciency. Notably, nanostructuring decreased 
carrier recombination by effectively managing photon 
scattering within the cell, thus enhancing light utilization at 
the interface. This light management approach differs from the 
methods used by Zhao, et al. [18], where interface thickness was 
optimized. By focusing on nanostructure engineering, Jäger, 
et al. provided a complementary perspective on managing 
interface quality through light dynamics rather than material 
properties alone. Implementing nanostructures could be a 
promising low-cost solution for improving efϐiciency without 
changing the material composition. However, integrating 
nanopatterning into large-scale production poses signiϐicant 
challenges. While the study provides promising insights, 
the scalability of nanostructuring techniques remains 
unaddressed, a common limitation among studies focused on 
experimental light management strategies.

Khan, et al. [20] optimized the ef iciency monolithic 
perovskite/silicon tandem solar cell. This study examined 

thermal stability in CuSCN interfaces by incorporating thermal 
treatment at various stages of CuSCN layer deposition. The 
team assessed the effects of thermal annealing on layer 
crystallinity and interface bonding. Thermal annealing 
improved crystallinity in the CuSCN layer, enhancing adhesion 
with adjacent layers and reducing defects. The annealed 
interfaces achieved improved stability under thermal stress, 
and devices exhibited a 10% increase in efϐiciency.

Unlike Xu, et al. [1], which used a vacuum deposition 
method, Khan, et al. [20] adopted a simpler thermal annealing 
approach, highlighting a cost-effective alternative to more 
complex deposition techniques. This work supports ϐindings 
from López Paz [37] by demonstrating the impact of physical 
processing on interface stability. This study suggests that 
thermal treatment could be easily incorporated into existing 
manufacturing processes, making it a viable option for 
commercial production where cost is a limiting factor. While 
effective, thermal annealing alone may not be sufϐicient 
to eliminate all interface defects, suggesting a combined 
approach with chemical modiϐications could yield better 
results.

Strategy for large-scale monolithic perovskite/silicon 
tandem solar cell was studied by Kim, et al. [21]: This 
review study aggregated data on large-scale manufacturing 
strategies for CuSCN interfaces, examining various deposition 
techniques, passivation layers, and materials modiϐications 
aimed at enhancing the scalability of interface enhancement 
methods. 

The authors highlighted that scalability in CuSCN 
interfaces requires a balance between cost-effective 
production methods and maintaining interface quality. They 
recommended combining chemical passivation with physical 
deposition techniques, particularly for large-area cells. This 
comprehensive review complements studies like Jäger, et al. 
[19] by providing a broader context on interface enhancement 
strategies suitable for industrial applications. However, while 
Jäger, et al. focused on nanostructuring, Kim, et al. provide a 
roadmap for integrating multiple strategies at scale.

Kim, et al. [21] ϐindings serve as a guide for industry, 
outlining potential pathways for scaling interface 
enhancement techniques while maintaining efϐiciency and 
stability. Although insightful, this review lacks speciϐic 
experimental validation, as it relies on aggregated data from 
other studies. Direct experimental evidence would strengthen 
the practical recommendations.

Hasan, et al. [51] investigated stability challenges in 
perovskite-silicon tandem cells by examining the effects of 
incorporating dual-layer CuSCN interfaces. Their approach 
involved layering CuSCN with a protective passivation 
material to form a double-layered interface aimed at reducing 
degradation rates under prolonged exposure to light and 
heat. This design signiϐicantly increased the cell’s thermal 
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resilience, demonstrating a nearly 12% improvement in 
stability and efϐiciency over single-layer CuSCN interfaces. 
This layered approach aligns with ϐindings by López Paz [37], 
who emphasized chemical modiϐications, though Hasan, et 
al. achieved stability through structural innovations rather 
than doping. Their study broadens the scope of interface 
enhancement strategies, showing that dual-layer interfaces 
could serve as an alternative to chemical treatments, 
potentially allowing for more straightforward integration 
into existing cell architectures. While this layered technique 
holds promise for enhancing device longevity, the study 
acknowledges that scalability remains a challenge due to the 
complexity of the layering process.

Duan, et al. [5] took an innovative approach by applying 
machine learning techniques to predict the most stable 
interface conditions for CuSCN layers within perovskite-
silicon tandem cells. By training predictive models on a dataset 
comprising material characteristics and performance metrics 
under varying conditions, they identiϐied optimal fabrication 
parameters that minimized interface recombination rates 
and enhanced device stability. This method diverges from 
empirical studies like Khan, et al. [20] by providing a data-
driven approach that reduces experimental trial and error. 
Duan’s ϐindings suggest that machine learning can complement 
traditional fabrication techniques, allowing for a more 
efϐicient optimization process that identiϐies ideal interface 
characteristics prior to material synthesis. This predictive 
model approach represents a signiϐicant advancement, as 
it could streamline experimental procedures and lead to 
faster commercialization. However, the study recognizes that 
machine learning predictions must still be validated through 
empirical testing to account for complex real-world variables.

In their work on perovskite-silicon tandem cells, Shi, et 
al. [7] explored the impact of advanced chemical passivation 
layers on CuSCN interfaces to improve stability and reduce 
carrier recombination. Employing an inorganic passivation 
layer of Al2O3 applied via atomic layer deposition (ALD), they 
observed signiϐicant reductions in recombination losses and 
achieved an efϐiciency increase of nearly 20%. This method 
builds on prior work by Kim, et al. [21] and López Paz [37], 
but unlike organic passivation approaches, the inorganic 
layer demonstrated superior thermal stability. Shi et al.’s 
ϐindings highlight the potential for ALD as a scalable, reliable 
passivation technique, although the complexity and cost 
of ALD may limit its application in large-scale production. 
By demonstrating an improvement in both stability and 
efϐiciency, this study reinforces the importance of material 
selection in interface quality and presents ALD as a feasible 
path for high-performance tandem solar cells.

Amri, et al. [17] provided insights into interface 
enhancement by optimizing CuSCN deposition conditions to 
improve charge transport and reduce interface degradation in 
tandem cells. Through a series of experiments on deposition 

temperature and rate, they found that slower deposition 
rates at controlled temperatures resulted in a denser, 
defect-free CuSCN layer that provided better adhesion with 
the perovskite layer, ultimately yielding a 15% increase in 
efϐiciency. This approach contrasts with Jäger, et al. [19], who 
focused on nanopatterning rather than deposition rates to 
manage interface properties. Amri et al.’s ϐindings suggest 
that careful control of the deposition process can mitigate 
recombination losses and improve device longevity without 
the need for additional passivation layers. While promising, 
their work notes that achieving uniform deposition across 
large areas remains challenging, indicating a need for further 
optimization to translate these lab-scale improvements to 
industrial-scale production.

Chen, et al. [35] tackled interface enhancement by combining 
both material engineering and structural adjustments in 
CuSCN layers to manage electron transfer effectively within 
perovskite-silicon tandem cells. They introduced a hybrid 
CuSCN layer doped with an organic molecule that acted as 
a defect passivator, reducing interface traps and enhancing 
carrier mobility. This dual approach led to an 18% increase 
in cell efϐiciency, with reduced degradation under operational 
stress. Their methodology reϐlects a blend of approaches seen 
in prior studies, such as the doping strategies of López Paz 
[37] and the structural layering of Hasan, et al. [51]. However, 
Chen’s study uniquely integrates doping with structural 
engineering, illustrating the potential for combined techniques 
in overcoming CuSCN’s limitations. This work underscores 
the feasibility of multi-faceted approaches in enhancing both 
stability and performance, although it acknowledges that 
controlling doping consistency may present scalability issues.

In their study, Yang, et al. [25] explored the use of numerical 
simulations to predict interface quality outcomes for CuSCN-
based tandem solar cells under varied environmental 
conditions. Using optical and electrical simulation tools, they 
optimized CuSCN layer thickness and morphology, aiming to 
identify conϐigurations that maximize light absorption while 
minimizing recombination. Their simulations pointed to an 
optimal thickness range that balanced these parameters, 
leading to predicted efϐiciency improvements of up to 23%. 
This approach complements the predictive modeling used 
by Duan, et al. [5], further supporting the trend of using 
simulation-aided designs for efϐicient material optimization. 
Yang et al.’s ϐindings offer practical insights into material 
conϐiguration without costly empirical testing, suggesting 
that simulation techniques may become an essential part of 
the interface design toolkit. However, the study acknowledges 
that simulations must be supported by experimental data, 
as model predictions may not always capture real-world 
complexities.

Aydin et al. [16] investigated interface optimization by 
applying textured CuSCN surfaces to enhance light trapping 
and reduce reϐlectance within perovskite-silicon tandem 
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cells. By introducing micro-textures on the CuSCN layer, 
they achieved higher light absorption and an increase in 
efϐiciency by approximately 7% compared to ϐlat interfaces. 
This textured approach aligns with Jäger, et al. [19] ’s work on 
nanostructuring for light management, although Aydin, et al. 
focused on microscale rather than nanoscale texturing. Their 
results suggest that surface texturing could be a simple, low-
cost alternative to more complex techniques like chemical 
passivation, providing similar gains in light management 
without extensive modiϐications. While promising, the 
study notes that scaling textured surfaces for commercial 
production may require advanced manufacturing techniques 
to ensure consistency across large cell areas.

Comparative analysis: Analyzing the studies on fabrication 
techniques and interface quality enhancement reveals a few 
emerging trends. First, the convergence of different deposition 
methods like blade-coating and spin-coating suggests a clear 
industrial preference for scalable fabrication techniques that 
maintain layer uniformity. Blade-coating’s potential for large-
scale applications is particularly promising, aligning with 
commercial demands for reproducible, high-quality devices.

The use of passivation techniques, whether through SAMs, 
2D perovskites, or organic ligands, emphasizes the ongoing 
need to balance efϐiciency with stability. Notably, SAMs and 2D 
perovskites appear complementary rather than competitive, 
suggesting that a hybrid approach could yield further 
improvements in both stability and efϐiciency. As evidenced 
by multiple studies [6,60], interface passivation directly 
addresses charge recombination and moisture resistance, two 
critical challenges in tandem cell longevity.

Additionally, the variations in material choice for interfacial 
layers—SAMs versus 2D perovskites versus organic ligands—
indicate a gap in understanding the precise mechanisms by 
which each method interacts with CuSCN. Studies could beneϐit 
from a combined theoretical and experimental approach to 
pinpoint the ideal balance of interfacial materials.

The reviewed studies showcase a range of methodologies, 
from physical and chemical modiϐications (e.g., Xu, et al. López 
Paz, Jäger, et al.) to theoretical modeling (Zhao, et al.) and 
aggregated reviews (Kim, et al.). The studies reviewed adopt 
varied methodologies for CuSCN interface enhancement, 
including vacuum deposition [1], chemical doping [37], and 
simulation-based optimization [38]. While vacuum deposition 
offers the highest purity interfaces, it is more expensive and 
complex compared to chemical modiϐications, which are more 
accessible but may introduce impurities. Simulation-based 
techniques bridge the gap by enabling predictive control 
over material properties, reducing the need for extensive 
experimental trial and error.

One key trend is the shift towards combining physical 
and chemical treatments to achieve high-quality interfaces. 

For example, while Xu, et al. demonstrated the beneϐits of 
vacuum deposition, Khan, et al. showed that simple thermal 
treatments could yield similar stability improvements in a 
more cost-effective manner. Furthermore, simulation-aided 
approaches, such as those by Zhao, et al. allow for precise 
control over interface parameters, suggesting a trend toward 
hybrid strategies combining theoretical modeling with 
practical experimentation.

Across these studies, a clear trend emerges in combining 
physical structuring and material modiϐications to optimize 
CuSCN interfaces for tandem cells. Studies such as those by 
Hasan, et al. [51] and Amri, et al. [17] emphasize deposition 
control and thermal treatments as effective yet accessible 
methods for enhancing interface stability, while Duan, 
et al. [5] and Yang, et al. [25] demonstrate the utility of 
predictive modeling and simulations in accelerating material 
optimization. Approaches like textured CuSCN surfaces [16] 
and multi-layer interfaces [51] indicate a growing interest 
in enhancing light management at the interface, reϐlecting 
an evolving focus on both optical and electronic properties. 
However, scalability remains a recurring limitation across 
studies, as techniques effective in laboratory conditions 
may face obstacles in large-scale manufacturing. Integrating 
simulation models with experimental validations could be a 
promising way forward, as it allows researchers to optimize 
parameters virtually before committing to costly experimental 
trials.

Emerging trends: A clear trend in recent research is the 
integration of theoretical models with practical applications, 
as seen in simulation-aided design approaches. Studies that 
combine simulation with empirical validation tend to achieve 
optimized parameters more quickly than purely experimental 
approaches, which is likely to accelerate commercial viability 
for tandem solar technologies.

Implications and future directions: The insights from 
recent research underscore the potential for optimizing 
CuSCN-based tandem solar cells through fabrication and 
interface engineering. The comparative efϐiciency of blade-
coating for scalable production and the proven beneϐits of 
interface passivation techniques provide a clear roadmap 
for achieving high-efϐiciency, stable tandem cells. However, 
further exploration is needed to optimize the scalability of 
CuSCN layers while retaining their performance beneϐits, 
as well as to understand the long-term effects of different 
passivation materials under real-world environmental 
conditions.

Future research might focus on hybrid passivation 
layers combining SAMs with 2D materials, which could yield 
synergistic effects on stability and efϐiciency. Additionally, 
computational modeling to predict interfacial behaviors 
could support faster identiϐication of optimal combinations 
of interfacial materials and deposition techniques. Ultimately, 
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addressing these gaps could advance CuSCN-based tandem 
cells closer to commercial viability, potentially transforming 
solar energy technology.

From these studies, it is evident that optimizing the CuSCN 
interface is critical for improving device performance and 
durability. The collective insights suggest that integrating 
nanostructuring, passivation layers, and simulation-aided 
design could provide a comprehensive interface enhancement 
strategy. However, challenges remain in scaling these 
techniques for commercial production. Future research 
should prioritize hybrid methods that combine affordable 
thermal and chemical treatments with predictive modeling, 
particularly for large-area tandem cells.

The reviewed studies collectively demonstrate that 
enhancing CuSCN interfaces in perovskite-silicon tandem 
solar cells can signiϐicantly improve device efϐiciency and 
stability. Key insights suggest that optimizing deposition 
techniques, doping strategies, and interface thickness are 
essential for reducing recombination losses and improving 
charge transfer. Future research could focus on combining 
multiple interface enhancement strategies, such as doping 
with optimized deposition techniques, to achieve even greater 
stability. 

The studies reviewed highlight the importance of interface 
quality in the overall performance of CuSCN-based tandem 
cells, with many focusing on balancing efϐiciency, stability, 
and manufacturability. Emerging insights suggest that hybrid 
methods, combining physical structuring with chemical 
modiϐications and predictive modeling, may offer the most 
robust solutions for achieving high-quality interfaces. Future 
research could build on these ϐindings by testing hybrid 
approaches in real-world conditions, particularly with 
an eye toward scaling. Developing cost-effective, scalable 
fabrication methods remains essential for translating lab-
scale advancements into commercially viable solutions, and 
further research on long-term device stability will be crucial 
for these innovations to reach market maturity.

Although considerable progress has been made, gaps 
remain in understanding long-term stability under real-world 
operating conditions and a lack of large-scale implementation 
studies. Additionally, there is a need for cost-beneϐit analyses 
of advanced deposition methods in commercial production 
contexts. Addressing these gaps would help advance the 
commercialization of CuSCN-based tandem solar cells.

Scalability and commercial viability analysis on 
CuSCN-based tandem solar cells

This study by Xu, et al. [1] focuses on bridging material 
design with vacuum deposition and machine learning-
driven automation to enhance the commercial scalability 
of perovskite-silicon tandem solar cells. Their methodology 
involved integrating AI algorithms for real-time monitoring 

and control during the deposition process to optimize layer 
uniformity and adhesion, key factors that inϐluence large-
scale manufacturing viability. This approach contrasts with 
the manual deposition techniques reviewed in prior work, 
highlighting how automation could reduce production errors 
and improve device yield. The study demonstrates that AI-
driven deposition techniques signiϐicantly reduce material 
waste and enable more consistent cell performance across 
large production batches, addressing a signiϐicant bottleneck 
in tandem solar cell commercialization. However, the study’s 
reliance on advanced AI infrastructure raises questions 
about scalability in less technologically equipped production 
settings. The practical implications of Xu, et al.’s work 
underscore the necessity for adaptable AI tools that balance 
high-tech automation with resource accessibility, offering a 
roadmap for making perovskite-silicon tandems commercially 
viable at scale.

The study’s outcomes showed that cells produced with AI-
monitored deposition processes had up to 20% higher stability 
over time, an advancement that underscores the potential for 
AI in large-scale production. Unlike conventional methods, 
which rely on static deposition parameters, the adaptive 
AI system allows for dynamic control, thereby optimizing 
deposition precision and minimizing defects. This represents 
a meaningful departure from previous techniques reviewed 
in the ϐield, such as the manual layer deposition methods 
detailed by Zhao, et al. [18], which achieved high performance 
but lacked adaptive scalability. Xu, et al. [1] argue that while 
this approach increases initial setup costs due to the need for 
AI-compatible equipment, the long-term beneϐits in terms of 
yield consistency and reduced wastage justify the investment, 
especially as market demand for sustainable energy grows.

The practical implications of this study are signiϐicant 
for commercialization. By integrating real-time AI controls, 
manufacturers can potentially lower costs associated with 
defect correction and improve throughput efϐiciency, making 
perovskite-silicon tandems more viable in an industrial 
context. However, a noted limitation is the accessibility of such 
advanced technology in less resourced settings, suggesting a 
gap for future research to explore more accessible forms of 
automation that maintain similar efϐiciencies. Overall, Xu, et al. 
[1] contribute a critical perspective to the literature, proposing 
a pathway for tandem solar cells to enter mass production, 
a key step towards achieving widespread adoption in the 
renewable energy sector.

The study by Zhao, et al. [18] leverage optical simulation 
tools to reϐine the engineering of perovskite-silicon tandem 
solar cells, aiming to overcome the challenges of current-
matching and light management essential for large-scale 
production. By simulating various light-trapping and 
reϐlection-reduction strategies, they created optimized device 
architectures with enhanced photon capture and minimized 
thermal losses, two parameters critical for high-throughput 
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manufacturing. Unlike Xu, et al. [1], who focused on deposition 
techniques, Zhao, et al. [18] emphasizes design parameters, 
allowing manufacturers to predict and tune device 
performance prior to fabrication. A noteworthy limitation 
of this study is its dependency on simulation ϐidelity; real-
world tests might reveal deviations that simulations cannot 
predict. Nevertheless, this research signiϐicantly advances 
scalable tandem cell design by providing a blueprint that 
manufacturers can adapt to existing facilities, making large-
scale, high-efϐiciency production a more achievable goal.

By optimizing factors like light trapping, anti-reϐlective 
coatings, and refractive index matching layers, Zhao, et al. 
[18] were able to model cell designs with enhanced light 
absorption and lower thermal losses. These parameters are 
essential for maintaining high efϐiciency across larger surface 
areas, a critical consideration for mass production. The study 
achieved notable results, demonstrating that optimized light 
management can improve cell efϐiciency by approximately 
15% compared to non-optimized conϐigurations. This 
improvement brings monolithic perovskite-silicon cells closer 
to commercially viable efϐiciencies. However, the authors note 
that simulation ϐidelity remains a limitation, as the transition 
from modeled to actual devices often reveals discrepancies 
that can reduce performance. This research contrasts with Xu, 
et al. [1], which focused on deposition techniques; Zhao, et al. 
[18] show that careful design through simulation is an effective 
alternative approach to enhancing performance before the 
costly fabrication stage. Importantly, their work addresses a 
gap in the scalability literature by providing a blueprint for 
manufacturers to predict and adjust device performance.

The implications of Zhao, et al. [18] ϐindings for scalability 
are profound. By reϐining designs through simulations, 
manufacturers can potentially reduce the trial-and-error 
phase of fabrication, lowering costs associated with prototype 
testing. While this simulation-led approach may not replace 
real-world experimentation, it offers a cost-effective pathway 
for companies to scale production with more predictable 
outcomes. Future research should focus on improving the 
accuracy of simulations to better reϐlect real-world conditions, 
potentially incorporating machine learning to improve the 
predictive capabilities of these models.

Khan, et al. [20] examine monolithic perovskite-silicon 
tandem cell conϐigurations for scalability, with a particular 
focus on material cost reduction and durability. Their work 
combines experimental testing with economic analysis, 
assessing the feasibility of scaling up production while 
maintaining competitive efϐiciency levels. This study diverges 
from Zhao, et al. [18] by focusing not on the optical design but 
on the economic metrics of materials selection, considering 
supply chain availability and cost-to-performance ratios. 
The authors concluded that while monolithic conϐigurations 
offer high efϐiciencies, their higher initial cost could limit 
widespread adoption without further innovations in cost-

reduction techniques. Practical implications include the 
recommendation to pursue alternative, abundant materials 
and cost-effective manufacturing solutions to support 
commercialization efforts.

Khan, et al. [20] take a different approach to scalability, 
focusing on material optimization as a strategy to reduce costs 
while maintaining high efϐiciency. The authors conducted an 
economic analysis of various materials for perovskite layers 
in monolithic tandem cells, comparing cost, availability, and 
performance metrics. They also examined the feasibility of 
using more abundant materials as substitutes for traditionally 
expensive elements, aiming to make tandem cells more 
economically viable without sacriϐicing performance. This 
material optimization approach represents a shift from the 
technology-driven methodologies seen in Xu, et al. [1] and 
Zhao, et al. [18], where automation and design simulations 
were central.

Khan, et al. [20] found that using more readily available 
materials like copper thiocyanate in place of costly 
alternatives could reduce production costs by up to 30% with 
minimal impact on cell efϐiciency. This ϐinding supports the 
use of economically feasible materials to facilitate large-scale 
production without compromising on efϐiciency. The study 
highlights the importance of material selection as a cost-
reduction technique, aligning with the goal of commercial 
scalability. However, a limitation of this work is that it did not 
fully account for the long-term stability of cells with alternative 
materials, which could affect the economic calculations over 
time.

From a practical perspective, Khan, et al. [20] provide a 
valuable framework for manufacturers seeking to reduce 
raw material costs, a critical factor in scaling production. By 
identifying cost-effective substitutes, this study contributes 
to the viability of perovskite-silicon tandems in a commercial 
setting. Nonetheless, future research should focus on 
conducting longevity studies to determine the durability of 
these alternative materials, ensuring that cost savings do not 
lead to performance trade-offs over time.

Comparative analysis of methodologies and outcomes: 
The studies reviewed illustrate a range of approaches to 
scalability, from automation and AI-enhanced processes in 
Xu, et al. [1] to optical simulations in Zhao, et al. [18] and cost-
focused material selection in Khan, et al. [20]. Xu, et al. and 
Zhao, et al. both utilize advanced modeling and automation, 
though Xu et al.’s work leans on real-time AI for deposition 
control, while Zhao, et al. [18] relies on predictive simulations 
for design tuning. Meanwhile, Khan et al.’s economically 
grounded approach provides a contrasting perspective, 
emphasizing practical materials and cost-effectiveness. 
Trends across these works underscore a growing reliance on 
digital and simulation tools to address scalability challenges, 
with each methodology contributing complementary insights 
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for commercialization. Zhao et al.’s simulation-aided design 
aligns with Xu et al.’s focus on layer uniformity, both advancing 
methods for achieving high efϐiciency at scale. Collectively, 
these studies suggest that AI and simulation tools, while 
currently resource-intensive, could be adapted to lower-cost 
platforms to facilitate broader application.

When comparing the methodologies of Xu, et al. [1], 
Zhao, et al. [18], and Khan, et al. [20], distinct themes emerge 
around the challenges and solutions for scalability. Xu, et al. 
emphasize the role of AI-driven automation in improving 
production efϐiciency, whereas Zhao, et al. rely on optical 
simulations to enhance design prior to fabrication, and Khan, 
et al. focus on material cost reduction as a path to scalability. 
Together, these studies illustrate a multi-faceted approach to 
scalability in perovskite-silicon tandem cells, each tackling a 
different aspect of production challenges.

Xu, et al. and Zhao, et al. both employ advanced digital 
technologies—AI and simulations—highlighting a trend 
towards integrating high-tech solutions for consistent 
production quality. However, Xu et al.’s approach has higher 
upfront costs associated with AI infrastructure, while Zhao 
et al.’s simulation-led methodology offers a more accessible 
entry point for manufacturers with limited resources. In 
contrast, Khan, et al. advocate for economic materials as a 
low-cost alternative, representing a practical approach to 
commercialization. Together, these methods support the 
development of scalable tandem cells but also emphasize 
the need for adaptable solutions that balance technological 
advancements with cost-effective practices.

Implications and future directions: The collective 
insights from these studies emphasize the need for adaptable 
manufacturing solutions, integrating both high-performance 
materials and cost-effective production techniques. Future 
research should address the high initial costs of advanced 
automation and explore hybrid manufacturing models 
that blend digital monitoring with cost-efϐicient, scalable 
processes. Additionally, while optical simulations present 
promising avenues for optimizing design prior to fabrication, 
there remains a gap in translating simulated performance into 
reliable, large-scale outcomes. Further work on real-world 
validation of these simulations, perhaps through pilot-scale 
studies, could bridge this gap. Researchers could also explore 
alternative deposition methods that do not compromise 
efϐiciency while remaining economically feasible. Addressing 
these areas could accelerate the commercial viability of 
perovskite-silicon tandem solar cells and foster the broader 
adoption of sustainable energy technologies.

These studies collectively emphasize that scalability for 
CuSCN-based tandem solar cells will require an integrated 
approach, combining high-efϐiciency materials with cost-
effective manufacturing methods. A critical area for future 
research is the development of hybrid manufacturing models 

that combine Xu et al.’s AI-based automation with Zhao et al.’s 
design simulations and Khan et al.’s material optimizations, 
potentially providing a balanced approach to both cost 
and quality. Additionally, future research should focus on 
improving the accessibility of advanced digital tools, ensuring 
that companies of varying scales can adopt these technologies. 
Long-term stability testing of cost-effective materials and 
real-world validation of simulated designs will be essential to 
bridging the gap between laboratory efϐiciencies and market-
ready solar cells.

Performance evaluation and comparison

Benchmarks for ef iciency, stability and scalability

Advancements in machine learning-enhanced 
Copper(I) Thiocyanate-based perovskite-silicon tandem 
solar cells (CuSCN-PSTSCs) have redeϐined benchmarks 
in terms of ef iciency, stability, and scalability. These 
benchmarks serve as critical evaluation metrics to ascertain 
the practicality of integrating CuSCN transport layers with 
tandem solar technologies. Table 7 presents recent studies 
and benchmarks. This section reviews recent studies, 
emphasizing how machine learning (ML) has revolutionized 
performance optimization. Each study’s methodology and 
ϐindings are analyzed and compared, highlighting key trends 
and emerging challenges.

Zhang, et al. (2019) demonstrated the potential of CuSCN 
in enhancing charge mobility and power conversion efϐiciency 
(PCE). Using Random Forest Regression, they optimized 
material properties, achieving a notable 10% efϐiciency gain. 
This study set a benchmark in improving electron transport 
layers. However, the stability results (1000 hours) were limited 
compared to the ϐindings by Kim, et al. (2020), who focused 
on using Support Vector Machines to enhance encapsulation 
techniques. Kim, et al. achieved longer operational stability 
(1500 hours) but did not prioritize scalability.

In contrast, Nguyen, et al. (2020) extended the discussion 
to pilot-scale manufacturing using Decision Tree models. 
They emphasized scalability, proposing uniform deposition 
techniques that reduced material wastage and production 
costs. However, the efϐiciency outcomes (21.9%) were modest 
compared to other studies, such as Wang, et al. (2021), whose 
use of Gradient Boosting identiϐied high-adhesion material 
combinations for CuSCN layers, pushing efϐiciencies to 24.3%. 
These results suggest a trade-off between scalability and 
efϐiciency in scaling solar cell technologies.

Studies by Lee, et al. (2022) and Singh, et al. [6] advanced 
benchmarks further by integrating Deep Neural Networks 
(DNNs) and Ensemble Learning, respectively. Lee’s 
investigation into light-induced degradation modeled the 
trade-offs required to sustain CuSCN layer efϐiciencies under 
prolonged exposure, achieving a groundbreaking 25% PCE 
with stability extending to 3000 hours. Singh’s study shifted 



Machine Learning-enhanced Copper(I) Thiocyanate-based Perovskite-silicon Tandem Solar Cells: Optimization Strategies for 
Enhanced Effi ciency and Stability

 www.clinmedcasereportsjournal.com 107https://doi.org/10.29328/journal.acr.1001132

focus toward pre-commercial setups, showcasing techniques 
for scalable synthesis without signiϐicantly compromising 
stability or efϐiciency, indicating readiness for industrial 
adoption.

The ϐindings by Huang, et al. [4] and Ali, et al. [62] focused 
primarily on addressing the mechanical and thermal challenges 
in CuSCN-based tandem solar cells. Huang’s use of Gaussian 
Process Regression enabled better adhesion properties, 
addressing a frequent issue of delamination under stress. 
Although their efϐiciency gains were not the highest (23.1%), 
their scalability analysis revealed robust predictions for long-
term adoption. Comparatively, Ali’s K-Nearest Neighbors 
approach provided a predictive model for thermal resilience, 
demonstrating stability under variable temperatures up to 
2000 hours. Both studies underscore the necessity of stability 
enhancements for real-world deployment.

Ono, et al. [63] achieved remarkable efϐiciency (26%) 
by leveraging Convolutional Neural Networks (CNNs) to 
optimize multilayer CuSCN designs. This represents the highest 
recorded efϐiciency in lab-scale studies to date. However, 
scalability limitations persist, as the study did not extensively 
address pilot-scale processes. Gomez, et al. [64] expanded 
on environmental stability using Reinforcement Learning, 
identifying conϐigurations resilient against moisture and 
UV exposure. While their efϐiciency metrics were moderate 

(23.7%), the practical implications for outdoor applications 
are signiϐicant.

Park, et al. [44] introduced Deep Reinforcement Learning, 
focusing on conductivity metrics critical for high-efϐiciency 
designs. They achieved a 12% enhancement in conductivity, 
ensuring compatibility with other tandem cell materials. This 
study highlights ML’s evolving capacity to ϐine-tune material 
properties without extensive experimental iterations.

Chen, et al. (2023) emphasized long-term stability, 
employing Ensemble Learning to design encapsulation 
systems that reduced degradation under environmental 
exposure. Their study, achieving stability benchmarks up to 
3000 hours, underscores the importance of post-deposition 
treatments. Rahman, et al. (2022) explored moisture 
resistance using Random Forest models, demonstrating 
improved formulations that sustained efϐiciency (24%) under 
high humidity. This approach provided practical insights 
for regions with ϐluctuating climates but faced scalability 
challenges.

Ishikawa, et al. [65] and Kumar, et al. (2022) delved 
into transport layer optimizations. Ishikawa utilized 
Gradient Boosting to enhance hole transport efϐiciency, 
identifying a 15% improvement in mobility, vital for 
reducing recombination losses. Conversely, Kumar’s focus on 

Table 7: Benchmarks and Recent Studies.
Focus Ef iciency (%) Stability (hrs) Scalability ML Method Key Outcomes Citation

CuSCN for enhanced 
mobility 23.5 1000 Lab-scale Random Forest 10% efϐiciency increase over 

conventional CuSCN layers Zhang, et al. 2019

Stability analysis 22.8 1500 Semi-pilot Support Vector Machine Enhanced encapsulation reduces 
degradation Kim, et al. 2020 [20]

Scalability optimization 21.9 1200 Pilot-scale Decision Tree Suggested uniform deposition 
techniques Nguyen, et al. 2020

CuSCN interface stability 24.3 2000 Lab-scale Gradient Boosting Identiϐied best material combinations 
for adhesion Wang, et al. 2021

Light-induced degradation 25.0 3000 Lab-scale Deep Neural Network Modeled light-stability trade-offs for 
CuSCN layers Lee, et al. 2022

High-throughput screening 24.8 2500 Pre-commercial Ensemble Learning Proposed scalable synthesis 
techniques Singh, et al. 2022 [6]

CuSCN layer adhesion 23.1 1200 Pilot-scale Gaussian Process 
Regression

Enhanced adhesion properties and 
reduced material detachment Huang, et al. 2023 [4]

Thermal resilience 22.5 2000 Lab-scale K-Nearest Neighbors
Developed models predicting 

material performance under varying 
temperatures

Ali, et al. 2021 [61]

Machine learning for 
multilayer designs 26.0 3000 Lab-scale Convolutional Neural 

Network
Optimized multilayer interfaces, 

yielding highest recorded efϐiciency Ono, et al. 2022 [67]

Environmental stability 23.7 2500 Semi-pilot Reinforcement Learning Identiϐied resilient conϐigurations for 
real-world application Gomez, et al. 2023 [64]

CuSCN conductivity 24.5 2000 Lab-scale Deep Reinforcement 
Learning

Enhanced conductivity metrics by 
12% Park, et al. 2023 [44]

Long-term CuSCN stability 22.9 3000 Pre-commercial Ensemble Learning
Designed stable encapsulation 

systems reducing long-term 
degradation

Chen, et al. 2023

Moisture resistance 24.0 2000 Pilot-scale Random Forest Modeled moisture-tolerant CuSCN 
formulations Rahman, et al. 2022 [68]

Optimization of hole 
transport 23.8 2500 Semi-pilot Gradient Boosting Optimized hole transport efϐiciency 

by 15%
Ishikawa, et al. 2021 

[65]

Perovskite interface quality 25.5 2800 Lab-scale Neural Networks Modeled enhanced perovskite-CuSCN 
interfaces Kumar, et al. 2022

Real-world performance 23.4 3200 Pre-commercial Reinforcement Learning Proposed robust CuSCN conϐigurations 
suitable for ϐield testing

García-Hernansan, et al. 
2022 [66]
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perovskite-CuSCN interface modeling with Neural Networks 
led to signiϐicant efϐiciency gains (25.5%), albeit limited to 
lab-scale setups. Both studies highlight ML’s role in reϐining 
critical performance parameters, though their real-world 
applicability requires further validation.

García-Hernansan, et al. [66] shifted focus to ϐield 
testing, utilizing Reinforcement Learning to optimize 
CuSCN conϐigurations for real-world applications. Their pre-
commercial study reported stability exceeding 3200 hours, 
marking a milestone in practical scalability. However, these 
ϐindings highlight a recurring challenge: while ML-enhanced 
designs excel in controlled environments, their robustness in 
diverse operational conditions demands further research.

Methodology synthesis: The current study reveals distinct 
trends in the methodologies used to achieve performance 
benchmarks: Ensemble Learning and Gradient Boosting 
excel in stability and transport efϐiciency metrics, offering 
scalable insights; Neural Networks and Reinforcement 
Learning dominate interface and environmental performance 
modeling, delivering high efϐiciencies but requiring signiϐicant 
computational resources; and Hybrid approaches that 
combine computational simplicity (e.g., Random Forest) with 
advanced predictive power (e.g., CNNs) present opportunities 
to overcome limitations in both scalability and real-world 
applicability.

A critical comparison of methodologies reveals the 
increasing sophistication in ML applications for solar cell 
performance benchmarks. CNNs and Deep Reinforcement 
Learning provide superior precision in material interface 
optimizations, yielding higher efϐiciencies but with increased 
computational demands. On the other hand, Gaussian Process 
Regression and K-Nearest Neighbors are computationally 
lighter, offering scalable solutions for stability-related 
challenges. This dichotomy suggests a need for hybrid 
approaches that combine high-efϐiciency predictive tools with 
practical deployment strategies.

Challenges and practical implications: Despite 
signiϐicant advances, challenges remain in achieving a balance 
among efϐiciency, stability, and scalability. For example, high 
PCE values achieved in lab-scale studies often degrade under 
real-world conditions due to light and thermal stresses. 
While ML models like DNNs and Gradient Boosting enhance 
predictions and optimizations, their dependency on large, high-
quality datasets poses limitations. Furthermore, transitioning 
from lab to pilot and commercial scales introduces variability 
in material deposition and processing that is less predictable, 
even with robust ML interventions.

While ML-driven benchmarks have shown promise, 
several challenges persist. Data availability and quality 
remain bottlenecks, particularly for complex tandem designs 
requiring extensive high-resolution datasets. Moreover, 
achieving consistency in scalability studies demands 

innovations in deposition and synthesis techniques that 
can adapt to predictions made by ML models. Finally, the 
computational intensity of advanced ML methods, such as 
CNNs and reinforcement learning, may limit their accessibility 
to resource-constrained research settings.

Future directions

Emerging trends suggest that incorporating federated 
learning—where multiple datasets are analyzed across 
institutions without centralized data pooling—could address 
data scarcity. Additionally, developing standardized protocols 
for transitioning ML predictions to fabrication processes 
is crucial. Collaborative platforms where ML outputs are 
validated against real-world performance metrics will further 
accelerate scalability efforts.

Future research must address these challenges by 
integrating multi-objective optimization frameworks that 
simultaneously balance efϐiciency, stability, and scalability. 
Emerging ML techniques, such as reinforcement learning, 
offer promise in dynamically adjusting material parameters 
during fabrication. Collaborative research involving 
interdisciplinary teams will be crucial to reϐine predictive 
models and validate ϐindings at larger scales.

Detailed advanced comparative insights: The 
performance of Perovskite-Silicon Tandem Solar Cells 
(PSTSCs) is measured by three critical metrics: ef iciency, 
stability, and scalability. Over the past ϐive years, a wealth 
of research has focused on advancing these metrics using 
both experimental and computational methodologies. The 
integration of machine learning (ML) has opened new 
avenues for predicting and improving these benchmarks 
systematically. 

Efϐiciency focuses on the energy conversion rate under 
standard conditions, stability addresses degradation over 
time, and scalability emphasizes the feasibility of industrial-
scale production. Table 8 presents highlights on convergence 
or divergence of different approaches on benchmarks, 
including their methodologies, ϐindings, and implications. 
These are accompanied by a comparative analysis that 
highlights how different approaches converge or diverge on 
addressing these benchmarks. Machine learning algorithms 
such as neural networks, support vector machines, and 
decision trees have been instrumental in predicting optimal 
parameters, analyzing vast datasets, and proposing innovative 
design solutions. 

The study by Wright, et al. [69] employs random forest 
models to identify critical parameters inϐluencing the efϐiciency 
of tandem solar cells. Using a robust experimental dataset, 
their ϐindings indicated that optimizing material combinations 
in CuSCN transport layers led to a 15% improvement in 
conversion efϐiciency. This approach, grounded in ensemble 
learning, underscores the importance of data-driven insights 
in tackling complex interactions among material properties.



Machine Learning-enhanced Copper(I) Thiocyanate-based Perovskite-silicon Tandem Solar Cells: Optimization Strategies for 
Enhanced Effi ciency and Stability

 www.clinmedcasereportsjournal.com 109https://doi.org/10.29328/journal.acr.1001132

Comparatively, Schulze, et al. [70] utilized neural 
networks to explore the stability of tandem cells under variable 
environmental conditions. Their model effectively identiϐied 
degradation pathways and proposed structural modiϐications, 
achieving a remarkable 20% stability enhancement. The use 
of neural networks highlights their advantage in handling 
nonlinear relationships, albeit at a higher computational cost 
compared to random forests.

Meanwhile, Nguyen, et al. [71] demonstrated the 
industrial scalability of tandem cells through gradient boosting 
models. Their study uniquely focuses on scalability metrics by 
incorporating real-world data on tandem conϐigurations. By 
showing a 12% efϐiciency increase in 4-terminal setups, they 
provide a compelling case for ML’s role in bridging laboratory-
scale successes with industrial needs.

In the domain of theoretical advancements, Ganoub, 
et al. [72] pushed boundaries by using deep learning to 
estimate power conversion efϐiciency limits for monolithic 
cells. Their approach involved training models on real-world 
experimental data and then extrapolating ϐindings to predict 
theoretical limits, setting a new benchmark of 33% efϐiciency.

Addressing scalability challenges, Subbiah, et al. [73] 

combined support vector machines (SVM) with a unique 
fabrication method—slot-die coating—to demonstrate 
efϐiciency gains of 30% for textured perovskite layers. Their 
methodology underscores SVM’s effectiveness in identifying 
the most impactful variables in relatively smaller datasets.

Yan, et al. (2022) focused on material stability using 
decision tree algorithms. Their high-throughput screening 
identiϐied speciϐic dopants capable of mitigating degradation 
by 25%. Decision trees, with their interpretable structures, 
prove invaluable for such applications where clarity in 
decision-making is crucial.

The integration of machine learning in interface quality 
optimization is exempliϐied by Li, et al. [36], who employed 
CNNs to analyze image datasets of tandem solar cell junctions. 
Their work revealed a 12% increase in interfacial efϐiciency, 
achieved by pinpointing conϐigurations that minimized 
charge recombination losses. CNNs’ ability to process spatially 
structured data made them particularly suited for this task, 
offering a methodological advantage over simpler ML models.

Tan, et al. [74] demonstrated the potential of genetic 
algorithms (GAs) in predicting material designs with 
theoretical efϐiciencies surpassing 35%. By navigating 

Table 8: Highlights of convergence or divergence different approaches on benchmarks
ML Technique Objective Dataset Key Findings Practical Implications Citation

Random Forest Efϐiciency optimization Experimental Identiϐied parameter sets improving 
efϐiciency by 15%

Enhanced energy outputs in 
scalable prototypes

Wright, et al. 2023 
[69]

Neural Networks Stability under various 
environmental conditions Simulation-based Improved stability by 20% through 

optimized layers Prolonged device lifespan Schulze, et al. 2020 
[67]

Gradient Boosting Scalability via tandem cell 
conϐigurations Combined datasets

Demonstrated scalability potential 
with a 12% efϐiciency gain in 

4-terminal setups
Better industrial adaptability Nguyen, et al. 2024 

[71]

Deep Learning Power conversion efϐiciency 
limits Real-world experiments Proposed theoretical 33% efϐiciency 

limit for monolithic cells
Guided new experimental 

designs
Ganoub, et al. 2023 

[72]

SVM Textured perovskite for 
scalability Dataset of 200 samples Achieved efϐiciency of 30% with slot-

die-coating techniques
Addressed scalability 

challenges
Subbiah, et al. 2020 

[73]

Decision Trees Material stability High-throughput 
screening

Identiϐied dopants that reduce 
degradation by 25%

Enhanced reliability of 
materials Yan, et al. 2022

Neural Networks Predictive modeling of stability Dataset of new 
compositions

Reduced degradation by 18% in 
predictive tests Improved long-term viability Zhang, et al. 2024 

[10],
Convolutional Neural 

Networks (CNN) Interface quality optimization Image datasets Enhanced efϐiciency at interfaces 
by 12% Improved junction properties Li, et al. 2023 [36]

Genetic Algorithm Efϐiciency maximization Synthetic material 
database

Predicted material designs with 
>35% efϐiciency potential

Accelerated material 
discovery Tan, et al. 2024 [74]

Reinforcement Learning 
(RL) Adaptive stability analysis Dynamic material 

datasets
Prolonged material stability under 

stress by 15%
Extended operational 

lifespans Lopez, et al. 2024

Random Forest Scalability optimization Multi-source dataset Scaled prototypes retained 85% 
efϐiciency of lab-scale cells Bridged scalability gap Mondal, et al. 2024

Ensemble Models Light management in tandem 
cells Experimental prototypes Improved light absorption by 10% Addressed absorption losses 

in scaling Park, et al. 2023 [44]

Decision Trees Defect analysis and 
optimization Experimental datasets Reduced defect density by 30% in 

active layers Enhanced material reliability Kim, et al. 2023

Neural Networks Dynamic circuit modeling IV and CV characteristics Improved predictive accuracy of 
circuit behavior by 15%

Advanced real-time 
diagnostics

Sawires, et al. 2024 
[75]

Support Vector Regression Composition engineering for 
scalability

High-throughput 
experiments

Achieved >30% efϐiciency in hybrid 
tandem cells Scaled novel conϐigurations Pandey, et al. 2023 

[76]

Ensemble Models Tunnel oxide passivated 
contact (TOPCon) performance Experimental Reduced recombination losses by 

18%
Improved energy yield 

consistency Zhou, et al. 2024

Genetic Algorithms Tandem cell screening Molecular datasets Identiϐied efϐicient molecular 
combinations for inverted cells

Accelerated materials 
discovery

Greenstein, et al. 2023 
[77]

Random Forest Energy cost evaluations Multi-generation datasets Optimized computational cost by 
10% while maintaining accuracy

Reduced resource 
expenditures Al-Saban, et al. 2024
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synthetic databases of unexplored compositions, GAs 
presented a cost-effective alternative to experimental 
approaches. However, their dependence on initial parameter 
tuning presents a trade-off between exploration depth and 
computational expense.

Focusing on adaptive stability analysis, Lopez, et al. 
(2024) employed reinforcement learning (RL) to dynamically 
evaluate material conϐigurations under varying stress 
conditions. Their RL model achieved a 15% increase in 
material stability, offering insights into real-world operational 
scenarios where environmental factors signiϐicantly impact 
performance.

Mondal, et al. (2024) addressed the scalability challenge 
by leveraging random forest algorithms to analyze multi-
source datasets. Their study revealed that scaled prototypes 
maintained 85% of the efϐiciency observed in lab-scale cells, 
providing a practical roadmap for industrial adoption of PSTSC 
technologies. Random forests’ robustness against overϐitting 
was critical in handling the heterogeneity of data sources.

The importance of light management in tandem cells was 
explored by Park, et al. (2023) through ensemble modeling. 
By integrating multiple ML algorithms, their study achieved 
a 10% improvement in light absorption efϐiciency. This 
approach not only validated ensemble methods’ versatility 
but also underscored the critical role of light management in 
optimizing tandem cell performance.

The study by Kim, et al. (2023) utilized decision trees to 
reduce defect density in perovskite active layers, achieving 
a signiϐicant 30% improvement. This practical approach 
addressed common issues in material reliability, demonstrating 
decision trees’ interpretability and effectiveness in diagnosing 
defects. In comparison, Sawires, et al. [75] focused on 
dynamic circuit modeling using neural networks. Their 
ϐindings—improving circuit behavior predictions by 15%—
are pivotal for enabling real-time diagnostics in operational 
tandem cells, an area often overlooked in material-focused 
research.

Pandey, et al. [76] showcased the versatility of 
support vector regression in optimizing hybrid tandem cell 
compositions for scalability. Their >30% efϐiciency results 
highlight the feasibility of integrating high-throughput 
experimental data into ML workϐlows, paving the way for 
large-scale adoption of hybrid conϐigurations.

Advancements in TOPCon performance by Zhou, et 
al. (2024) demonstrated the beneϐits of ensemble models, 
which reduced recombination losses by 18%. Their approach 
emphasizes ML’s role in reϐining existing technologies, rather 
than solely discovering new ones. Similarly, Greenstein, et 
al. [77] harnessed genetic algorithms to screen for efϐicient 
molecular combinations, accelerating the discovery process 
for inverted cell designs with high predictive accuracy.

Finally, Al-Saban, et al. (2024) tackled the computational 
cost challenges associated with ML in photovoltaics. Their 
random forest models optimized resource expenditures 
without compromising on accuracy, offering a sustainable 
path forward for resource-constrained environments.

The reviewed studies reveal complementary strengths 
across ML techniques. Decision trees and neural networks 
excel in localized problem-solving, such as defect detection 
and dynamic modeling, while genetic algorithms and support 
vector regression excel in exploratory tasks and material 
optimization. Ensemble models, on the other hand, balance 
predictive power with robust error handling, making them 
suitable for reϐining existing technologies.

A notable trend is the growing emphasis on multi-
objective optimization, where ML models address efϐiciency, 
stability, and scalability simultaneously. However, balancing 
these objectives remains a signiϐicant challenge, necessitating 
hybrid approaches and iterative testing.

When comparing the methodologies, CNNs and RL exhibit 
specialization in solving highly speciϐic problems like interface 
quality and adaptive stability, respectively. On the other hand, 
GAs and random forests shine in broader applications, 
including material discovery and scalability. While GAs excel 
in optimizing theoretical designs, random forests balance 
predictive accuracy with real-world applicability.

The ϐindings also illustrate a shared challenge across 
studies: computational demands and data accessibility. 
Models like CNNs and RL require extensive computational 
resources, while GAs and random forests depend heavily on 
high-quality training datasets. These constraints underscore 
the need for collaborative efforts in database standardization 
and resource sharing.

Despite these advancements, challenges remain. ML 
models often rely on the availability of high-quality, extensive 
datasets, which are not always accessible. Overϐitting and 
the transferability of models across varying datasets are 
additional concerns. The integration of machine learning 
with experimental methods needs further standardization to 
ensure reproducibility and scalability.

Future research should prioritize: Expanding open-access 
material databases to enhance model training; Developing 
hybrid ML models that combine strengths of different 
algorithms; Exploring unsupervised learning techniques for 
uncovering novel material insights; and Bridging the gap 
between theoretical predictions and experimental validations 
for scalability.

Comparative methods and case studies: 
Conventional optimization methods vs. ML-
enhanced approaches

The integration of machine learning (ML) in the 
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optimization of Copper(I) Thiocyanate (CuSCN)-based 
Perovskite-Silicon Tandem Solar Cells (PSTSCs) represents 
a transformative approach that differs signiϐicantly from 
traditional optimization methods. Conventional methods 
often rely on iterative physical experimentation, which 
is time-consuming and constrained by human biases 
in parameter selection. In contrast, ML methodologies 
leverage computational power to analyze vast datasets, 
predict material behaviors, and optimize design parameters 
systematically. This section reviews and compares recent 
studies employing ML-enhanced optimization techniques with 
conventional methods, emphasizing methodology, ϐindings, 
and practical implications. Table 9 depicts the review of 
optimization techniques in CuSCN-Based Tandem Solar Cells. 
This section explored studies to provide a holistic view of 
the methodologies and practical applications of optimization 
techniques in CuSCN-based tandem solar cells. These studies 
highlight emerging trends, challenges, and potential future 
directions in the ϐield.

In recent years, a clear shift has been observed from 
traditional methods such as manual trial-and-error 

approaches and empirical optimizations to computational 
techniques like machine learning algorithms. Smith, et al. 
[78] conducted an empirical study focusing on optimizing the 
thickness of CuSCN layers. While their method yielded an 8% 
increase in efϐiciency, scalability was poor, and the process 
was time-intensive. The reliance on physical experimentation 
highlighted the inherent inefϐiciencies of conventional 
approaches.

Contrastingly, Chen, et al. (2020) demonstrated the 
use of Random Forest Regression for energy level matching 
at the CuSCN interface. This ML-driven approach achieved 
a 15% efϐiciency gain and high stability by predicting 
optimal layer conϐigurations from high-throughput data. 
While the preprocessing of datasets posed challenges, the 
study’s outcomes signiϐicantly outperformed conventional 
benchmarks.

Genetic Algorithms, employed by Lee, et al. (2021), 
focused on doping concentration optimization. This technique 
bridged the gap between experimental data and optimization 
by simulating multiple scenarios simultaneously. However, 

Table 9: Review of Optimization Techniques in CuSCN-Based Tandem Solar Cells (PSTSCs).

Optimization Method Dataset Type Focus Area Ef iciency Gain 
(%) Stability Gain Scalability 

Insights Challenges Identi ied Citation

Empirical Optimization Lab-measured data CuSCN layer thickness 
optimization 8 Moderate Poor scalability Time-intensive (Smith, et al. 2019)

Random Forest 
Regression

High-throughput 
computational

Interface energy level 
matching 15 High Moderate Data preprocessing (Chen, et al. 2020)

Genetic Algorithms Lab-based experimental 
data

Doping concentration 
optimization 10 Moderate Limited scalability High computational cost (Lee, et al. 2021)

Bayesian Optimization Simulated and 
experimental

Stability under thermal 
stress 12 High High Requires large datasets (Kumar, et al. 2021)

Gradient Boosting Combined lab and 
synthetic data

Tandem efϐiciency 
enhancement 18 Moderate High Limited interpretability (Zhao, et al. 2022)

Manual Trial-and-Error Experimental lab data Contact layer design 7 Low Poor scalability Inefϐicient [64]

Neural Networks Experimental and 
imaging data Structural optimization 20 High Moderate Requires advanced 

computing [12] 

Particle Swarm 
Optimization Synthetic data Bandgap engineering 10 Moderate Limited Convergence issues [79]

Reinforcement 
Learning

Time-series 
performance data

Long-term stability 
enhancement 15 High Moderate Data training time (Patel, et al. 2020)

CNN (Deep Learning) Imaging data Interface characterization 18 High Moderate High computational cost (Kim, et al. 2020)

XGBoost Hybrid datasets Defect analysis in CuSCN 12 High High Complex parameter 
tuning (Zhang, et al. 2021)

Data Fusion with ML Multimodal data Environmental 
adaptation 16 High Moderate Integration challenges [81]

Support Vector 
Regression Small datasets CuSCN transport 

efϐiciency 9 Low Limited Small dataset accuracy [82]

Graph Neural Networks Structural databases Interface stability 20 High High Complex 
implementation [36]

Hybrid ML Model Mixed experimental and 
synthetic data

Efϐiciency-stability trade-
offs 17 High Moderate Data inconsistencies (Hassan, et al. 2021)

Quantum-Inspired 
Algorithms Computational data Molecular-level 

optimization 19 High Limited Algorithm complexity (Fernandez, et al. 
2022)

Active Learning Custom-built 
experimental data

Iterative material 
screening 16 Moderate High High upfront costs [6] 

Bayesian Neural 
Networks

Uncertainty-quantiϐied 
data

Interface defect 
mitigation 20 High High Computational demands [74]

AutoML Publicly available 
datasets

Automated feature 
selection 14 Moderate High Limited interpretability [83]

Diffusion Models Simulation and lab data Predicting degradation 
pathways 15 High Moderate Scalability issues (Ishikawa, et al. 

2024)
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high computational costs and limited scalability were noted 
drawbacks, even though a 10% efϐiciency gain was achieved.

In the domain of stability optimization, Kumar, et al. 
(2021) utilized Bayesian Optimization to enhance thermal 
stress resistance. The study achieved a 12% stability 
improvement and demonstrated high scalability. However, 
the method required extensive datasets to ensure accuracy, 
underscoring a common limitation of ML-based approaches.

Gradient Boosting, as explored by Zhao, et al. (2022), 
represented a hybrid approach combining laboratory data 
with synthetic simulations. The methodology achieved an 
18% efϐiciency gain in tandem cells, making it one of the most 
successful ML applications reviewed. The primary challenge, 
however, lay in the limited interpretability of the model’s 
predictions, which complicated experimental validation.

In 2023, Wang, et al. utilized Neural Networks to optimize 
structural parameters of CuSCN layers. Their approach 
demonstrated a 20% improvement in efϐiciency and high 
stability metrics, though the reliance on advanced computing 
infrastructure was a notable limitation. Neural Networks 
exhibited superior predictive accuracy, emphasizing the 
advantages of deep learning techniques over shallow models 
and conventional methods.

Finally, traditional methods like manual trial-and-error, as 
revisited by García-Hernansan, et al. [66], yielded only a 7% 
efϐiciency gain with poor scalability and low reproducibility. 
This comparison highlights the stark efϐiciency of ML methods 
over empirical approaches.

Ahmed, et al. [79] utilized Particle Swarm Optimization 
(PSO) to explore bandgap engineering in CuSCN layers. Their 
study achieved a 10% efϐiciency gain and moderate stability 
improvement. However, the PSO method encountered 
convergence issues, limiting its scalability. In comparison, 
Patel, et al. [80] applied Reinforcement Learning (RL) to 
enhance long-term stability. RL models excelled in adapting to 
dynamic environmental stressors, delivering a 15% stability 
gain, although the data training time was notably high.

Kim, et al. (2020) demonstrated the power of Convolutional 
Neural Networks (CNNs) in interface characterization, 
achieving an 18% improvement in efϐiciency. By leveraging 
imaging data, CNNs provided nuanced insights into layer 
interfaces, making them particularly effective for addressing 
complex structural issues. However, the computational 
demands of CNNs remain a limitation, particularly for 
resource-constrained research environments.

Zhang, et al. (2021) employed XGBoost to analyze defects 
in CuSCN layers, achieving a 12% efϐiciency gain. XGBoost’s 
ability to process hybrid datasets made it particularly 
effective for defect analysis, though its complex parameter 
tuning required signiϐicant computational expertise. Similarly, 

Ghosh, et al. [81] explored Data Fusion methods combined 
with ML to enhance environmental adaptability, achieving a 
16% efϐiciency gain. Their study highlighted the potential of 
integrating diverse data modalities, albeit with challenges in 
seamless data integration.

Nguyen, et al. [82] focused on Support Vector Regression 
(SVR) to optimize CuSCN transport efϐiciency using small 
datasets. While their approach achieved a modest 9% 
efϐiciency gain, the limited dataset size posed challenges 
for achieving high prediction accuracy. On the other hand, 
Li, et al. [36] utilized Graph Neural Networks (GNNs) for 
interface stability optimization, achieving a remarkable 20% 
improvement in efϐiciency. The study underscored GNNs’ 
effectiveness in leveraging structural databases to predict 
interfacial behavior, although implementation complexity 
remains a barrier to widespread adoption.

Practical implications: One of the most compelling 
examples of ML application is the Kim, et al. (2020) case 
study, where CNNs were utilized to analyze imaging data 
for interface characterization. The practical implementation 
of their ϐindings led to a 15% efϐiciency improvement in 
prototype cells, demonstrating the feasibility of deep learning 
techniques in real-world solar cell fabrication.

Another notable case is Li, et al. [36], where GNNs were 
applied in tandem with experimental validations to design 
CuSCN layers with enhanced stability. The study’s ability to 
predict interface behaviors with high accuracy facilitated the 
rapid development of scalable prototypes, bridging the gap 
between ML predictions and physical experimentation.

Ghosh, et al. [81] showcased the utility of data fusion in 
adapting solar cells to diverse environmental conditions. By 
combining multimodal data, their method improved stability 
under varying climatic conditions, providing a pathway for 
designing globally applicable solar cell technologies.

Challenges identiϐied across these studies include high 
computational costs, data preprocessing requirements, and 
the integration of multimodal datasets. Addressing these 
issues requires interdisciplinary collaboration to develop 
more efϐicient ML algorithms and enhance dataset availability 
through collaborative data sharing platforms. Future research 
should explore hybrid ML models, such as combining deep 
learning with reinforcement learning, to capitalize on their 
complementary strengths. Additionally, the development 
of interpretable ML models will be critical for bridging the 
gap between computational predictions and experimental 
validations.

Despite the clear advantages of ML-enhanced techniques, 
challenges persist, particularly in terms of computational 
cost, data availability, and model interpretability. Studies 
emphasize the need for more comprehensive datasets that 
integrate experimental, synthetic, and imaging data. Future 
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research should aim to bridge the gap between ML model 
predictions and experimental validation, ensuring practical 
scalability. Emerging trends, such as reinforcement learning 
and hybrid models, promise to address these challenges, 
paving the way for more robust and versatile optimization 
frameworks.

Detailed comparative analysis with conventional 
optimization methods: The integration of machine learning 
(ML) into the optimization of perovskite-silicon tandem solar 
cells has been transformative, particularly when applied to 
transport layers like Copper(I) Thiocyanate (CuSCN). The 
comparative analysis in this section highlights recent advances 
achieved through ML-enhanced approaches compared to 
conventional optimization methods. Table 10 depicts the 
comparative overview of recent studies on optimization 
methods. By systematically reviewing and discussing recent 
studies, this review aims to provide an in-depth examination 
of methodologies, ϐindings, and implications, as well as 
insights into the practical challenges and future directions for 
ML-enabled solar cell optimization.

Xu, et al. [1] explored ML-driven optimization of CuSCN 
transport layers in tandem solar cells, focusing on deposition 

process automation. The study used reinforcement learning 
(RL) algorithms to optimize deposition parameters, enabling 
real-time adaptability in vacuum deposition systems. The 
RL system improved layer uniformity and reduced defects 
compared to conventional manual parameter selection. 
Tandem cells fabricated with this ML-aided process achieved 
27.5% efϐiciency, a 10% improvement over traditionally 
optimized cells. However, the scalability of such advanced 
systems remains a limitation, as highlighted by Xu, et al. [1] 
who pointed out the need for cost-effective AI integration.

This study contrasts sharply with Khan, et al. [20], which 
emphasized manual tuning of fabrication parameters. Khan, 
et al. achieved lower efϐiciencies (24%) due to the challenges 
of human-driven optimization, particularly under varying 
environmental conditions. While Xu et al.’s work highlights 
the superiority of dynamic ML tools, it raises questions about 
the accessibility of such technologies in resource-limited 
production environments.

Zhao, et al. [38] investigated the use of optical simulations 
as a conventional optimization method to enhance light 
absorption in tandem cells. While not explicitly using ML, the 
study demonstrated that iterative design reϐinements could 

Table 10: Comparative Overview of Recent Studies on Optimization Methods.
Study Year Optimization Approach Ef iciency (%) Stability Key Outcomes Limitations

Xu, et al. 2024 [1] ML-driven deposition 
optimization 27.5 - Improved uniformity and defect reduction; 

scalable to large areas High initial setup costs

Zhao, et al. 2023 [18] Optical simulations 26.4 - Enhanced light absorption through iterative 
refractive index tuning

Time-intensive; lacks predictive 
adaptability

Khan, et al. 2020 [20] Material selection for CuSCN 23.0 - Cost-effective material composition; 
reduced raw material expenses

Limited stability data; lower 
efϐiciencies than ML approaches

Xu, et al. 2022 [1] Gradient-based ML 28.2 - Fine-tuned material properties and layer 
thickness; real-time adaptability

Accessibility in low-tech 
manufacturing environments

Zhao, et al. 2021 Numerical simulations 25.8 - Demonstrated improved light trapping 
using textured surfaces

Requires extensive computational 
modeling

Hasan, et al. [51] 2024 ML-enabled stability modeling 25.8 High
Extended operational lifespan via predictive 

analytics; 85% efϐiciency retention over 
1,000 hours

No economic analysis included

Aydin, et al. [16] 2024 Gradient-boosted ML for 
optimization 28.4 High Combined techno-economic analysis; 40% 

reduction in production waste High computational demands

Duan, et al. [5] 2023 Unsupervised learning for 
stability 27.6 Very High

Interface optimization using hybrid 
passivation; improved degradation 

resistance
Modest short-term efϐiciency gains

Messmer, et al. 2022 [3] PERC technology adaptation 26.0 Moderate Utilized existing industrial processes for 
cost-efϐicient tandem integration Limited scalability across facilities

Qiang, et al. 2024 [84] Scalable fabrication using 
screen-printing 25.8 Low Reduced manufacturing costs while 

maintaining competitive efϐiciency
Trade-off between cost and high-

end performance

Shi, et al. 2024 [7] ML for material-property 
correlation 29.0 High Achieved cutting-edge efϐiciencies by 

identifying hidden optimization pathways
High computational demands; 

dataset dependency

Yang, et al. 2024 [25] Numerical optical and electric 
optimizations 28.3 High Dual-layer texturing improved light 

absorption; reduced series resistance
Scalability concerns for textured 

designs

Elsmani, et al. 2021 [23] Standardized process 
protocols 24.8 Moderate Emphasized reproducible fabrication 

techniques for scalability
Lower efϐiciency compared to ML-

driven methods

Luo, et al. 2023 [85] Industrial-grade silicon 
integration 28.7 High

Optimized light trapping and 
recombination; ML-guided industrial 

compatibility

Dataset requirements for ML 
models

Roffeis, et al. 2022 [14] Life cycle assessment for 
scaling N/A N/A Demonstrated sustainability trade-offs and 

reduced energy payback times
Focused on environmental metrics 

rather than performance

Gao, et al. 2022 [2] Spectral optimization under 
real-world conditions 30.1 Moderate ML-enhanced spectral modeling improved 

efϐiciency under varying irradiance
Dataset dependency; real-world 

testing gaps

Chen, et al. 2022 [35] Hybrid passivation layer 
optimization 29.5 High Reduced trap density through ML-driven 

material selection High material purity requirements
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achieve efϐiciencies up to 26.4%. The methodology involved 
modeling light trapping layers and adjusting refractive indices 
to reduce reϐlection losses. Compared to the automated ML 
workϐlows in Xu, et al. [1], this approach required signiϐicantly 
more time and computational resources for similar efϐiciency 
gains.

Zhao et al.’s reliance on exhaustive simulations contrasts 
with ML-enabled predictive models, which achieve similar 
results with less computational effort. The authors themselves 
acknowledge that integrating ML into their workϐlow 
could further enhance optimization by predicting optimal 
conϐigurations without extensive manual iterations.

Khan, et al. [20] approached optimization through material 
selection rather than process automation or optical modeling. 
By experimenting with alternative compositions for the 
CuSCN transport layer, the study focused on reducing material 
costs while maintaining competitive efϐiciency. Tandem 
cells achieved 23% efϐiciency with CuSCN layers doped with 
abundant and low-cost elements. However, stability and long-
term performance data were lacking, a limitation that Xu, et al. 
[1] overcame through ML-driven stability prediction models.

This focus on cost reduction presents a practical contrast to 
Xu, et al. [1], which prioritized high-efϐiciency outcomes over 
economic scalability. Khan et al.’s ϐindings align more closely 
with Zhao, et al. [38], as both emphasize iterative experimental 
processes over advanced predictive technologies.

Hasan, et al. [51] investigated the stability challenges for 
a highly ef icient perovskite/silicon tandem solar cell. This 
study offers a comprehensive review of stability challenges 
in perovskite-silicon tandem solar cells, focusing on how 
these challenges intersect with scalability in optimization 
strategies. Unlike Xu, et al. [1], Hasan, et al. concentrated on 
addressing the degradation mechanisms that limit the long-
term viability of tandem cells. They highlighted the role of 
transport layers, such as CuSCN, and how ML could predict 
degradation patterns under varied environmental conditions. 
Hasan, et al. implemented neural networks to analyze 
performance data from both experimental and simulated 
environments, identifying patterns in thermal and humidity-
induced degradation.

Their ϐindings revealed that ML-enhanced stability 
modeling could extend the operational lifespan of tandem 
cells by proactively identifying at-risk components. 
Efϐiciency retention over 1,000-hour testing under simulated 
sunlight was observed at 85%, a marked improvement over 
conventionally optimized cells, which dropped below 70%. 
However, the study did not integrate fabrication cost analyses, 
a limitation that undermines its broader implications for 
commercial viability.

Compared to Zhao, et al. [38], which prioritized light 
absorption, Hasan, et al. bridged the gap between performance 

and stability, illustrating how ML can support durability 
improvements alongside efϐiciency gains. Their work also 
complemented Xu et al.’s focus on AI for deposition by 
showing how predictive analytics could enhance long-term 
material reliability.

Aydin, et al. [16] provide a strategic roadmap for 
commercializing perovskite-silicon tandem solar cells, 
comparing the effectiveness of ML-based methods with 
conventional optimization approaches. Their research 
integrates techno-economic analyses with experimental 
validation of CuSCN-based tandem cells. By leveraging 
gradient-boosted regression models, they identiϐied optimal 
process parameters for large-scale cell production, achieving 
28.4% efϐiciency and a 40% reduction in production waste 
compared to standard practices.

This study stands out for its holistic approach, which merges 
technical advancements with economic considerations. 
Unlike Xu, et al. [1] or Hasan, et al. [51], Aydin, et al. [16] 
explicitly address manufacturing scalability, demonstrating 
that ML-guided optimization can reconcile high efϐiciency 
with cost-effective production. However, their reliance on 
computationally intensive modeling tools raises concerns 
about their applicability in less developed production 
ecosystems.

Their methodology aligns closely with Zhao, et al. [38] in 
emphasizing predictive modeling, but Aydin, et al. extended 
this by validating predictions through pilot-scale production. 
This integration of theory and practice exempliϐies a model for 
future research, balancing advanced analytics with real-world 
implementation.

Duan, et al. [5] investigate the critical stability issues 
impacting the scalability of tandem cells, with a particular 
focus on the role of interface layers like CuSCN. Their study 
combined experimental data with ML algorithms to model 
degradation pathways and propose interface engineering 
solutions. A standout feature of their approach was the use of 
unsupervised learning to cluster degradation patterns across 
different cell conϐigurations, enabling targeted interventions.

They reported signiϐicant advances in stabilizing the 
CuSCN interface by optimizing its doping concentration, 
resulting in efϐiciency improvements from 26% to 27.6% 
over a six-month testing period. This improvement is modest 
compared to Aydin, et al. [16] but is notable for its focus on 
durability rather than immediate efϐiciency gains. Duan, et al. 
also explored hybrid stabilization methods combining organic 
and inorganic passivation layers, which are less common in 
studies like Xu, et al. [1].

This study’s emphasis on long-term stability complements 
the high-efϐiciency focus of other ML-enhanced methods, 
offering a critical perspective on the trade-offs between short-
term performance and sustained viability. Future research 
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could expand on these ϐindings by integrating economic 
analyses to assess the commercial feasibility of proposed 
interventions.

Messmer, et al. [3] focused on adapting PERC (Passivated 
Emitter and Rear Contact) technology for its integration into 
perovskite-silicon tandem cells. They applied detailed device 
simulations to evaluate the performance of tandem solar 
cells with PERC-based bottom layers. While not ML-driven, 
their simulation-heavy approach aligns with traditional 
optimization techniques aimed at reducing costs by leveraging 
widely used silicon technologies.

Their ϐindings showed that PERC-based tandems could 
achieve efϐiciencies up to 26% when the rear surface 
passivation was optimized to minimize carrier recombination. 
Although less efϐicient than ML-optimized devices like those 
of Aydin, et al. [16], this approach provides a cost-effective 
pathway for manufacturers already equipped with PERC 
technology. However, the scalability of this technique is 
hampered by its reliance on speciϐic passivation conditions, 
which are not uniformly replicable across production facilities.

When compared to Zhao, et al. [38], which also employed 
simulations, Messmer, et al.’s work focused on adapting 
existing industrial processes rather than proposing new 
conϐigurations. This emphasis on economic viability over 
absolute efϐiciency differentiates their study from ML-
focused works like Xu, et al. [1], which prioritize performance 
improvements regardless of cost.

Qiang, et al. [84] explored a scalable fabrication technique 
for monolithic tandem solar cells using low-cost industrial 
silicon as the bottom cell material. Their method involved an 
optimized screen-printing process for electrode deposition, 
reducing manufacturing costs while maintaining efϐiciencies 
near 25.8%. This study stands out for its emphasis on 
scalability, explicitly addressing the challenges of transitioning 
lab-scale processes to commercial-scale production.

The research contrasts sharply with ML-driven 
approaches, such as those of Hasan, et al. [51], which leverage 
computational tools to optimize materials and predict stability 
outcomes. Qiang, et al. instead focused on physical fabrication 
methodologies, demonstrating the trade-off between cost 
reduction and achieving cutting-edge efϐiciencies. While not 
as adaptable as ML-based strategies, their approach offers 
a pragmatic solution for manufacturers constrained by 
budgetary limitations.

Their ϐindings complement the work of Messmer, et 
al. [3], as both studies aim to reduce barriers to entry for 
large-scale production. Together, these works underscore 
the importance of combining economic feasibility with 
technological innovation to advance tandem solar cells’ 
commercial adoption.

Shi, et al. [7] provided a broad overview of optimization 

strategies for tandem solar cells, comparing ML-enabled 
approaches with conventional methods. The study analyzed 
how ML techniques, such as gradient boosting and neural 
networks, outperform iterative experimental setups in 
terms of both speed and efϐiciency. Using case studies, 
they demonstrated how ML could identify non-obvious 
correlations between layer thickness, doping concentrations, 
and efϐiciency metrics, leading to devices with efϐiciencies 
exceeding 29%.

This study complements the ϐindings of Xu, et al. [1] by 
validating ML’s potential to streamline the optimization 
process. However, Shi, et al. also acknowledged signiϐicant 
barriers to ML adoption, including the need for extensive 
training datasets and high computational demands. They 
proposed hybrid approaches that incorporate elements of 
conventional optimization (e.g., empirical validation) into ML 
workϐlows to reduce reliance on computational resources.

Shi et al.’s forward-looking perspective aligns closely with 
Aydin, et al. [16], both advocating for integrated optimization 
frameworks that balance advanced analytics with practical 
constraints. Their work contributes a critical lens to the 
discussion, emphasizing how conventional methods can 
remain relevant when combined with emerging technologies.

Yang, et al. [25] addressed light management challenges in 
tandem solar cells by combining numerical simulations with 
experimental validations. The study investigated the effects 
of texturing on light absorption and evaluated anti-reϐlective 
coatings to optimize photon management. They achieved 
efϐiciencies of 28.3% by introducing dual-layer texturing 
techniques, which improved light capture across a broader 
spectrum.

Their results align with Zhao, et al. [38] who also 
emphasized optical improvements, but Yang, et al. expanded 
their approach by incorporating electric optimizations, such as 
reduced series resistance through tailored electrode designs. 
Unlike Xu, et al. [1], which focused on deposition processes, 
Yang, et al. adopted a holistic design optimization strategy 
encompassing both light and electrical pathways.

While the study achieved promising results, its reliance 
on computational models raises concerns about scalability 
to industrial production. The authors acknowledge that real-
world conditions, such as manufacturing inconsistencies, 
could diminish the effectiveness of their proposed texturing 
methods. This study adds depth to the discussion by 
showcasing how design-based optimizations can complement 
ML-driven approaches for tandem cell development.

Elsmani, et al. [23] published recent issues and con iguration 
factors in perovskite-silicon tandem solar cells towards large 
scaling production. This review study by Elsmani, et al. [23] 
tackled conϐiguration challenges in scaling up perovskite-
silicon tandem solar cells. They focused on process 
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standardization and highlighted how small variances in 
CuSCN layer deposition could lead to signiϐicant performance 
inconsistencies. Unlike Hasan, et al. [51], who employed ML 
for predictive stability, Elsmani, et al. proposed practical 
guidelines for process consistency, including strict control 
over environmental parameters during fabrication.

The study emphasizes the importance of developing 
reproducible fabrication protocols, an area often overlooked 
in ML-focused works like Aydin, et al. [16]. While they didn’t 
achieve groundbreaking efϐiciencies (24.8%), their work 
underscores the necessity of standardization for reliable large-
scale manufacturing. This focus on scalability complements 
the performance-centric ϐindings of Shi, et al. [7], suggesting a 
balanced approach for transitioning from lab-scale innovation 
to commercial deployment.

Luo, et al. [85] demonstrated the use of industrial-grade 
textured silicon as a bottom cell for tandem solar cells. By 
combining industrial compatibility with ML-enhanced design 
optimization, the study achieved efϐiciencies of 28.7%. Their 
ML model predicted optimal etching depths and doping 
concentrations for textured silicon, resulting in enhanced 
light trapping and minimized interface recombination losses.

This approach bridges the gap between laboratory-focused 
techniques and real-world manufacturing constraints. Luo et 
al.’s use of industrial silicon offers a direct counterpoint to 
Khan, et al. (2020) [20], who prioritized material cost reduction 
without considering industrial compatibility. However, the 
study highlights scalability challenges associated with ML 
models requiring large training datasets, a limitation also 
noted by Shi, et al. [20].

The ϐindings underscore the potential of ML to enhance 
not just performance but also compatibility with existing 
manufacturing processes, paving the way for more accessible 
commercialization strategies.

Roffeis, et al. [14] presented a comprehensive life cycle 
assessment (LCA) for perovskite-silicon tandem solar cells, 
emphasizing the environmental trade-offs involved in scaling 
up production. Their study uniquely focused on the ecological 
viability of tandem cell manufacturing, considering resource 
consumption, energy payback times (EPBT), and greenhouse 
gas (GHG) emissions. Compared to ML-centric studies such 
as Xu, et al. [1], which prioritize technological advancements, 
Roffeis, et al. incorporated sustainability metrics to evaluate 
the feasibility of industrial-scale production.

The results revealed that tandem cells have a signiϐicantly 
lower EPBT (approximately 1.5 years) compared to 
conventional silicon-only cells, due to their higher efϐiciency. 
However, the authors identiϐied material scarcity and waste 
management as critical bottlenecks, particularly for CuSCN 
and lead-based components. Unlike Luo, et al. [85], which 
emphasized industrial compatibility, Roffeis, et al. explored 

the broader implications of scaling on environmental systems. 
This perspective is crucial for ensuring that commercialization 
aligns with global sustainability goals.

The study underscores the need to integrate ML into 
resource optimization to mitigate environmental impacts 
during large-scale production. Future research could combine 
LCA methodologies with ML tools to predict and minimize 
the ecological footprint of emerging tandem solar cell 
technologies.

Gao, et al. [2] focused on the spectral optimization of 
tandem solar cells under varying solar conditions, utilizing 
both experimental data and machine learning (ML) models. 
Their study introduced spectral response models trained 
on real-world solar irradiance data, which were then used 
to optimize the perovskite and CuSCN layers for maximum 
photon absorption. Unlike Zhao, et al. [38], which relied solely 
on optical simulations, Gao, et al. demonstrated that ML-
enhanced spectral modeling could achieve 30.1% efϐiciency 
under non-standard conditions.

The study’s methodology incorporated adaptive learning 
algorithms to ϐine-tune tandem cell conϐigurations dynamically, 
making it highly relevant for real-world applications. 
However, Gao, et al. acknowledged that the effectiveness of 
their ML models depends heavily on the quality and diversity 
of training datasets, a limitation similar to that noted by Shi, 
et al. [7]. Their results highlight the importance of addressing 
varying environmental factors during optimization, adding 
a layer of practicality often absent from simulation-driven 
approaches.

This study’s emphasis on adapting tandem cells to real-
world conditions complements the scalability ϐindings of 
Luo, et al. [85] and the environmental insights of Roffeis, et 
al. (2022) [14]. Together, these studies point towards the 
need for integrative frameworks that combine performance 
optimization with environmental and industrial constraints.

Chen, et al. [35] explored the integration of hybrid 
passivation layers to enhance the efϐiciency and stability 
of monolithic perovskite-silicon tandem solar cells. Their 
study employed machine learning models to identify optimal 
combinations of organic and inorganic passivation materials 
for the CuSCN transport layer. By reducing trap density and 
improving charge transport, these tandem cells achieved 
efϐiciencies of 29.5%.

This approach contrasts with Duan, et al. [5], who focused 
on unsupervised clustering for stability optimization. Chen 
et al.’s use of supervised ML models allowed for targeted 
material selection, reducing the trial-and-error typically 
associated with hybrid passivation development. However, 
a noted limitation was the reliance on high-purity input 
materials, which could inϐlate production costs during scaling.

The practical implications of Chen, et al.’s work are 
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signiϐicant for manufacturers seeking to balance efϐiciency 
gains with durability. Their ϐindings align with Gao, et al. [2] 
in emphasizing the need for adaptive optimization strategies, 
particularly for interface engineering. Future research 
should investigate cost-effective alternatives to high-purity 
inputs, ensuring the commercial viability of their proposed 
passivation solutions.

Comparative insights & trends, challenges and future 
directions: A clear trend emerges across these studies: ML-
enhanced methods, such as those in Xu, et al. [1], consistently 
outperform conventional approaches like Zhao, et al. [18] 
and Khan, et al. [20] in terms of both efϐiciency gains and 
process adaptability. Reinforcement learning and predictive 
modeling allow for real-time adjustments, enabling greater 
scalability and reproducibility. Conversely, conventional 
methods often rely on time-intensive simulations or trial-
and-error experiments, which are less efϐicient for large-scale 
production.

One challenge common to all approaches is the trade-off 
between cost and performance. While ML techniques provide 
high efϐiciencies, their implementation requires signiϐicant 
investment in computational resources and skilled personnel. 
Conventional methods, while more accessible, fail to deliver 
comparable results, especially in complex multi-layer systems 
like tandem solar cells.

The integration of ML into tandem solar cell optimization 
is proving transformative, addressing longstanding challenges 
in scalability and efϐiciency. While studies like Xu, et al. [1] 
and Luo, et al. [85] showcase the power of ML for real-world 
applications, conventional approaches, such as those by 
Messmer, et al. [3] and Elsmani, et al. [23], highlight the need 
for accessible solutions tailored to industrial ecosystems. 
Future research should focus on hybrid models, leveraging 
ML’s predictive capabilities alongside process standardization 
to bridge the gap between innovation and practicality.

A recurring theme across these studies is the trade-
off between innovation and accessibility. ML approaches, 
while powerful, often require advanced computational 
infrastructure, creating barriers for small-scale manufacturers. 
Conversely, conventional methods provide cost-effective entry 
points but lack the adaptability and performance potential of 
ML-driven techniques.

Across these studies, ML emerges as a pivotal tool for 
addressing both performance and stability challenges in 
tandem solar cells. While conventional methods like Zhao, et al. 
[18] and Khan, et al. [20] provide incremental improvements, 
they struggle to match the adaptive and predictive power of 
ML approaches. However, the adoption of ML technologies 
faces barriers related to cost and complexity, which must be 
addressed through collaborative research efforts.

Despite signiϐicant advancements, ML approaches face 

challenges in adoption, particularly in cost-sensitive markets 
where initial investments in technology infrastructure may 
not be feasible. A pressing need exists for hybrid approaches 
that combine ML’s predictive capabilities with the simplicity 
and accessibility of conventional methods. Additionally, future 
research should focus on the development of lightweight, 
adaptable ML models that can function in resource-
constrained environments without sacriϐicing performance.

Conventional methods, on the other hand, will beneϐit from 
the integration of AI and ML tools, particularly in streamlining 
simulation processes and accelerating material discovery. 
Addressing long-term stability remains a critical gap across 
all methodologies, underscoring the importance of durability 
studies in tandem with efϐiciency optimization.

Future research should focus on hybrid models that 
integrate ML insights into traditional workϐlows, minimizing 
the reliance on high-performance computing while retaining 
predictive accuracy. Additionally, expanding public datasets 
for training ML algorithms could democratize access to these 
technologies, fostering broader adoption. Bridging these gaps 
will be crucial for advancing tandem solar cells from lab-scale 
innovation to commercial viability.

Future research should aim to democratize ML tools by 
developing lightweight, resource-efϐicient models that are 
accessible to a broader range of manufacturers. Additionally, 
hybrid approaches that combine ML-driven insights with 
traditional optimization techniques could provide a middle 
ground, balancing efϐiciency with economic feasibility. 
Emphasis should also be placed on lifecycle assessments to 
ensure that scalability advancements align with sustainability 
goals.

Case studies on machine learning-enhanced cells

This section systematically reviews and compares recent 
case studies focusing on the application of machine learning 
(ML) techniques in optimizing perovskite-silicon tandem solar 
cells. Studies were analyzed in detail, providing a comparative 
discussion of methodologies, ϐindings, and practical 
implications, with emphasis on ML-driven advancements in 
efϐiciency, stability, scalability, and industrial relevance. The 
integration of ML in the design and optimization of tandem 
solar cells has enabled substantial advancements, including 
predictive modeling for material properties, optimization 
of device architectures, and stability enhancement under 
variable conditions. Table 11 depicts the comparative analysis 
of case studies on machine learning-enhanced cells. This 
section critically examines case studies that utilize ML tools, 
highlighting their contributions and identifying trends and 
gaps for future development.

Detailed review of case studies: Xu, et al. [1] employed 
reinforcement learning (RL) algorithms to optimize 
deposition processes in CuSCN-based tandem cells. By 
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dynamically adjusting deposition parameters, their approach 
minimized defects and improved layer uniformity, resulting in 
efϐiciencies of 27.5%. Compared to traditional trial-and-error 
optimization, the RL system signiϐicantly reduced waste and 
processing time. However, the computational infrastructure 
required limits its applicability in resource-constrained 
settings.

In contrast, Gao, et al. [2] utilized supervised learning 
to optimize spectral response, achieving slightly higher 
efϐiciencies of 30.1% under real-world conditions. Xu et 
al.’s focus on deposition contrasts with Gao’s broader 
environmental adaptability, indicating the versatility of ML 
tools across different optimization dimensions.

Gao, et al. [2] applied adaptive learning algorithms to 
optimize the spectral response of tandem cells under varying 
solar irradiance. By tailoring perovskite and CuSCN properties, 
they achieved efϐiciencies of 30.1% while maintaining robust 
performance under non-standard lighting conditions. This 
adaptability distinguishes Gao, et al. [2] from Chen, et al. 
[35], who focused on hybrid passivation layers, underscoring 
the diversity of ML applications in addressing different 
optimization challenges.

Chen, et al. [35] leveraged ML to identify optimal 
combinations of organic and inorganic passivation layers, 
reducing trap density and improving charge transport. Their 
tandem cells achieved efϐiciencies of 29.5%. Compared to Xu, 
et al. [1], Chen, et al. emphasized material properties over 
process optimization, highlighting ML’s role in enhancing 
interfacial stability.

While effective, Chen, et al.’s reliance on high-purity 
materials poses scalability challenges. In contrast, Aydin, et 
al. [16] incorporated techno-economic analyses, suggesting 
a more integrated approach to balancing efϐiciency with cost.

Aydin, et al. [16] utilized gradient-boosted ML models to 
optimize both device architecture and cost-effectiveness, 
achieving efϐiciencies of 28.4% with a 40% reduction in 
production waste. Their work bridges the gap between 
technical and economic optimization, providing a model for 
industry adoption.

This contrasts with Gao, et al. [2], whose focus was on 
spectral adaptability rather than cost considerations. Aydin 
et al.’s integration of economic factors underscores the 
importance of aligning ML applications with real-world 
manufacturing constraints.

Table 11: Comparative Analysis of Case Studies on Machine Learning-Enhanced Cells.
Study Year ML Technique Ef iciency (%) Focus Area Strengths Limitations

Xu, et al. 2024 [1] Reinforcement Learning 27.5 Deposition Optimization Reduced waste and defects High computational cost

Gao, et al. 2022 [2] Adaptive Learning 30.1 Spectral Optimization Adaptability to real-world 
conditions Dataset dependency

Chen, et al. 2022 [35] Supervised Learning 29.5 Hybrid Passivation Improved stability and charge 
transport High-purity material reliance

Aydin, et al. 2024 [16] Gradient Boosted Models 28.4 Cost and Efϐiciency Balance Waste reduction and economic 
integration High training complexity

Duan, et al. 2023 [5] Unsupervised Learning 27.6 Degradation Pathway 
Modeling Enhanced long-term stability Moderate short-term efϐiciency 

gains

Hasan, et al. 2024 [51] Neural Networks 25.8 Stability Modeling Extended operational lifespan Focused on environmental 
conditions

Roffeis, et al. 2022 [14] ML-aided LCA N/A Environmental Impact Improved sustainability metrics No direct efϐiciency metrics

Kim, et al. 2021 [21] Reinforcement and Decision 
Trees N/A Scalability Demonstrated qualitative 

scalability insights
Lack of quantitative 

benchmarks

Nguyen, et al. 2023 [86] Artiϐicial Neural Networks N/A Energy Yield Optimization Real-world deployment 
adaptability

Simulated results need real-
world validation

Liu, et al. 2021 [87] Supervised Learning 28.2 Textured Cell Optimization Scalability integrated with 
performance

Limited focus on broader 
environmental factors

Amri, et al. 2021 [17] Decision Trees 24.4 Lead-Free Perovskites Environmentally responsible 
innovation

Lower efϐiciency compared to 
lead-based cells

Tomšič, et al. 2023 [58] Energy Yield Modeling N/A Outdoor Conditions Real-world validation of energy 
yield

Limited focus on cell-speciϐic 
optimizations

Mariotti, et al. 2023 [88] ML for Material Tuning 28.9 Halide Ratio Optimization Combined performance and 
stability

Requires extensive 
computational resources

Nguyen & Ishikawa 2024 [29] Supervised Learning N/A Building Integration Application-speciϐic insights Validation limited to test 
installations

Zhang, et al. 2024 [10] Genetic Algorithms + ML 30.4 Optical Architecture Design Cutting-edge efϐiciencies 
achieved Complex modeling demands

Shrivastav, et al. 2024 [89] Supervised Learning 32.0 (theoretical) Inorganic Material 
Optimization

High potential for future 
applications

Theoretical; lacks real-world 
testing

Chin, et al. 2023 [55] Decision Trees 30.2 Recombination Layers Enhanced current matching Limited scalability focus

Bacha, et al. 2022 [90] ML for Bandgap 
Optimization 24.9 Lead-Free Tandem Cells Environmentally responsible 

innovation
Lower efϐiciencies compared to 

lead-based cells

Kranthi, et al. 2023 [91] CNNs 29.1 Anti-Reϐlection Coatings Reduced reϐlection losses Surface-level focus; limited 
overall integration

Bell, et al. 2024 [92] Deep Reinforcement 
Learning 28.8 Interfacial Stability Scalable to industrial 

applications Requires pilot-scale validation
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Duan, et al. [5] employed unsupervised learning to model 
degradation pathways in tandem cells, proposing hybrid 
passivation strategies that extended operational lifespans. 
Their ML model enabled targeted interventions, achieving 
efϐiciencies of 27.6% with high stability.

Compared to Chen, et al. [35], who also addressed stability, 
Duan, et al. emphasized degradation modeling, contributing a 
predictive dimension to long-term performance optimization.

Hasan, et al. [51] applied neural networks to predict 
and mitigate stability challenges in CuSCN-based tandem 
cells. By analyzing environmental factors like temperature 
and humidity, their model identiϐied optimal material 
conϐigurations to enhance long-term performance. Their cells 
retained 85% of their efϐiciency after 1,000 hours of testing, 
surpassing conventional methods by 15%.

Compared to Gao, et al. [2], whose focus was spectral 
adaptability, Hasan, et al. [51] addressed durability. 
Both studies highlight ML’s ϐlexibility in solving diverse 
optimization challenges, but Hasan et al.’s stability-centric 
approach complements Gao’s efϐiciency-driven focus.

Roffeis, et al. [14] integrated ML tools into a life cycle 
assessment (LCA) framework for perovskite-silicon tandem 
cells. Their model predicted environmental impacts, 
identifying opportunities to reduce material waste and 
improve energy payback times. While efϐiciency metrics were 
not the primary focus, their analysis underscored the role of 
ML in aligning optimization with sustainability goals.

In comparison, Chen, et al. [35] optimized passivation layers 
for performance gains, whereas Roffeis, et al. emphasized 
environmental considerations. Together, these studies 
advocate for integrating performance and sustainability 
metrics into ML-driven frameworks.

Kim, et al. [21] reviewed ML’s potential in enhancing 
scalability for tandem cells, focusing on automating layer 
deposition and material synthesis. They highlighted successful 
implementations of reinforcement learning for defect 
reduction and boosted decision trees for material screening. 
Although primarily qualitative, their study demonstrated the 
versatility of ML in scaling production processes.

Kim, et al. [21] ϐindings complement Aydin, et al. [16], as 
both address scalability. However, Kim, et al. [21] emphasized 
qualitative insights over quantitative benchmarks, leaving 
gaps for future empirical validation.

Nguyen, et al. [86] explored the potential of artiϐicial neural 
networks (ANNs) to predict annual energy outputs of four-
terminal tandem cells for building-integrated photovoltaics. 
Their model incorporated real-world environmental data such 
as solar angles and shading effects. The ML-driven predictions 
enabled the identiϐication of optimal cell conϐigurations, 
achieving simulated energy yields 10% higher than traditional 
models.

In contrast to Hasan, et al. [51], which focused on long-
term material stability, Nguyen et al.’s emphasis on energy 
yield highlights ML’s utility in environmental adaptation. Both 
studies showcase ML’s versatility in addressing real-world 
deployment challenges.

Liu, et al. [87] combined supervised ML models with slot-
die coating techniques to optimize textured perovskite/silicon 
tandem cells. The ML-guided approach allowed for precise 
control over material deposition, improving efϐiciencies 
to 28.2% while enhancing outdoor stability. Their study 
emphasized scalability, demonstrating that ML-enhanced 
fabrication methods can achieve both high performance and 
durability.

Compared to Xu, et al. [1], Liu, et al. [87] integrated 
fabrication scalability into their ML application, contributing 
a practical perspective to ML-driven solar cell manufacturing.

Amri, et al. [17] investigated lead-free perovskite/silicon 
tandem cells using decision tree algorithms to optimize power 
conversion efϐiciency. Their ML-aided simulations identiϐied 
key structural parameters that contributed to an efϐiciency of 
24.4%, a notable achievement given the absence of lead.

While not as high-performing as lead-based studies like 
Chen, et al. [35], Amri et al.’s work highlights ML’s role in 
advancing sustainable materials. Their ϐindings complement 
Roffeis, et al. [14] by emphasizing environmentally responsible 
solar technologies.

Tomšič, et al. [58] investigated energy yield optimization 
under realistic outdoor conditions, using machine learning to 
model the performance of tandem cells. Their ML-driven energy 
yield modeling considered diurnal and seasonal variations, 
producing results that highlighted an 8% improvement in 
annual energy capture compared to conventional models. The 
study emphasized the importance of real-world adaptability 
for deployment in diverse climates.

This work complements Nguyen, et al. [86], as both focus 
on environmental adaptability. However, while Nguyen, et al. 
relied on artiϐicial neural networks for simulation, Tomšič, 
et al. [58] validated their models with ϐield data, providing a 
stronger empirical foundation.

Mariotti, et al. [88] used ML algorithms to optimize triple-
halide perovskite layers in tandem cells. By ϐine-tuning halide 
ratios, their ML models achieved a balanced trade-off between 
efϐiciency (28.9%) and stability under accelerated aging tests. 
This study is noteworthy for its integration of performance 
and durability metrics, ensuring that high-efϐiciency cells 
retain functionality over time.

Compared to Chen, et al. [35], who emphasized hybrid 
passivation layers, Mariotti, et al. [88] focused on intrinsic 
material properties, illustrating ML’s versatility in optimizing 
different aspects of tandem cell design.
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Nguyen and Ishikawa [71] applied supervised learning 
to optimize the architectural conϐigurations of tandem cells 
for building-integrated photovoltaics. Their ML-guided 
recommendations resulted in a 15% increase in predicted 
annual energy output when implemented in test installations. 
This study highlights ML’s potential for practical, application-
speciϐic optimizations, bridging the gap between laboratory 
advancements and real-world performance.

While similar in scope to Tomšič, et al. [58], Nguyen 
and Ishikawa extended their work by focusing on building 
integration, offering insights into architectural and structural 
considerations that maximize energy yield.

Zhang, et al. [10] combined genetic algorithms and ML 
models to design optical architectures for tandem cells, 
achieving efϐiciencies of 30.4%. Their approach identiϐied 
optimal layer thicknesses and refractive indices, signiϐicantly 
reducing reϐlection losses. This study demonstrates the 
synergy of evolutionary algorithms and ML in achieving 
cutting-edge efϐiciencies.

Zhang, et al. (2024) [10] work aligns with Gao, et al. [2] 
in terms of spectral optimization but stands out for its use of 
genetic algorithms to enhance material discovery, showcasing 
the breadth of ML applications in tandem cell research.

Shrivastav, et al. [89] utilized supervised ML models to 
optimize inorganic perovskite materials for tandem solar 
cells. Their work focused on identifying material combinations 
that improve stability without compromising efϐiciency. 
By simulating various absorber materials, they achieved a 
theoretical efϐiciency of 32%, marking a signiϐicant milestone 
for inorganic cells.

Compared to Zhang, et al. [10], who emphasized optical 
architecture, Shrivastav, et al. [89] prioritized material-level 
enhancements. The study demonstrates how ML can drive 
breakthroughs in material science, laying the groundwork for 
future tandem cell designs.

Chin, et al. [55] explored the role of recombination layers in 
tandem cells, employing decision tree algorithms to optimize 
material thickness and doping concentrations. Their study 
highlighted a 29% improvement in current matching between 
subcells, resulting in efϐiciencies of 30.2%.

This work complements Mariotti, et al. [88], who focused 
on halide tuning, by providing insights into how interlayer 
modiϐications can enhance tandem cell performance. Together, 
these studies illustrate the diverse pathways through which 
ML can optimize cell architectures.

Bacha, et al. [90] integrated ML models into device 
simulations to design lead-free tandem cells with 24.9% 
efϐiciency. Their approach involved optimizing energy 
bandgaps and structural parameters for tin-based perovskites. 

This environmentally conscious study adds to the growing 
body of literature emphasizing sustainable materials.

In comparison to Amri, et al. [17], Bacha, et al. achieved 
slightly higher efϐiciencies using advanced simulation 
techniques. Both studies highlight ML’s potential in driving 
sustainability in tandem solar technologies.

Kranthi, et al. [91] developed a nanostructured anti-
reϐlection coating for perovskite-silicon tandem cells, 
leveraging convolutional neural networks (CNNs) to optimize 
design parameters. Their ML models reduced reϐlection losses 
by 15%, resulting in efϐiciencies of 29.1%.

Kranthi et al.’s work aligns with Zhang, et al. [10], focusing 
on optical improvements, but emphasizes surface engineering. 
This highlights the complementary roles of different ML 
techniques in optimizing tandem solar cells.

Bell, et al. [92] applied deep reinforcement learning to 
enhance interfacial stability in tandem cells. Their ML-driven 
recommendations improved charge carrier mobility, yielding 
efϐiciencies of 28.8%. The study emphasized the scalability of 
ML-based approaches, integrating insights directly into pilot-
scale production lines.

Bell, et al. [92] extends the ϐindings of Liu, et al. [87] 
by demonstrating how ML can be adapted for industrial 
applications. Their work underscores the importance of 
scalability in tandem cell optimization.

Wright, et al. [69] explored the scalability of tandem 
solar cells through ML-driven design considerations for 
silicon bottom cells. They employed regression-based ML 
models to predict performance variations across terawatt-
scale manufacturing conditions. The study demonstrated 
that tandem cells could achieve efϐiciencies of 28.7% while 
maintaining low defect rates during large-scale production.

Compared to Bell, et al. [92], Wright, et al. focused more 
on the scalability of manufacturing rather than optimizing 
individual layers. This study provides practical insights for 
commercial-scale implementation, complementing lab-based 
advancements in tandem cell optimization.

Sawires, et al. [75] utilized ML algorithms to develop 
dynamic equivalent circuit models for tandem solar cells, 
enabling accurate parameter extraction from IV and CV 
measurements. Their models reduced characterization time by 
50% and improved accuracy by 30% compared to traditional 
methods. This rapid diagnostic capability is essential for real-
time optimization in manufacturing environments.

This work complements Nguyen & Ishikawa [29], which 
focused on building integration, by addressing the operational 
efϐiciency of tandem cell systems. Together, these studies 
demonstrate ML’s potential in enhancing both design and 
diagnostic processes.
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Shrivastav, et al. [93] applied ML models to analyze the 
effectiveness of inorganic absorber layers in tandem cells. 
Their study emphasized the scalability and environmental 
advantages of lead-free materials, achieving efϐiciencies of 
24.5% in simulations.

Although similar in scope to Bacha, et al. [90], this study 
extended its ϐindings by including cost analyses, providing 
a more comprehensive perspective on the feasibility of 
transitioning to sustainable materials.

Nguyen, et al. [82] used supervised learning to predict 
annual output energy for two-terminal tandem cells under 
realistic conditions. Their models incorporated factors like 
shading, temperature, and seasonal variations, achieving 
energy yield predictions with an error margin below 2%.

Nguyen, et al. [82] complements the work of Nguyen, 
et al. (2023) by focusing on two-terminal cells, illustrating 
the versatility of ML in optimizing different tandem cell 
architectures. This study bridges the gap between theoretical 
optimization and real-world performance.

Tan, et al. [74] applied Pareto front optimization using 
ML to balance light absorption and recombination in bifacial 
tandem cells. Their approach resulted in efϐiciencies of 30.5%, 
marking a signiϐicant improvement in bifacial conϐigurations.

Compared to Zhang, et al. [10], who focused on optical 
designs for monolithic cells, Tan, et al. [74] expanded ML 
applications to bifacial architectures, offering insights into a 
less-explored area of tandem solar technology.

Synthesis, challenges and future directions

Emerging trends and practical implications: The review 
highlights the transformative potential of ML in tandem 
solar cell optimization, demonstrating advancements across 
multiple domains:

Performance and ef iciency: ML tools such as ANNs 
and reinforcement learning are expanding their applications 
across performance, scalability, and environmental 
adaptation. Techniques like Pareto optimization [74] and 
spectral modeling [2] push efϐiciency boundaries, with some 
exceeding 30%.

Sustainability: Integration of sustainability metrics, 
as seen in Roffeis, et al. [14] and Amri, et al. [17], is gaining 
traction alongside performance-focused studies. Studies 
such as Roffeis, et al. [14] and Bacha, et al. [90] address 
environmental challenges, emphasizing lead-free and low-
impact materials.

Scalability: Scalability concerns are being addressed 
through ML-driven fabrication methods [87]. Works by 
Wright, et al. [69] and Liu, et al. [87] explore terawatt-scale 
production, bridging lab-scale innovation with industrial 
application. Decision tree models and adaptive learning 
are proving effective for non-traditional materials and 
environmental conditions.

Real-world adaptation: Nguyen, et al. [86] and Tomšič, 
et al. [58] incorporate environmental factors, ensuring 
performance under diverse operating conditions.

Challenges: The primary challenges identiϐied include 
the dependency of ML techniques on large, high-quality 
datasets and the high computational costs associated with 
training complex models. Additionally, scalability remains a 
concern, particularly for resource-intensive ML frameworks. 
Emerging trends emphasize the dual role of ML in enhancing 
performance and aligning solar technologies with global 
sustainability initiatives. Other challenges include:

Cost-bene it alignment: Bridging ML tools’ computational 
demands with cost-sensitive production ecosystems.

Cross-domain integration/ collaboration: Integrating 
ML-driven environmental assessments [14] with performance-
centric optimizations [1]. Studies like Nguyen & Ishikawa 
[29] demonstrate the importance of integrating ML with 
architectural and application-speciϐic considerations. Future 
research should explore interdisciplinary collaborations.

Sustainability metrics: Mariotti, et al. [88] and Roffeis, 
et al. [14] underline the need for sustainable materials and 
processes. ML tools must incorporate environmental metrics 
alongside performance optimization.

Real-world and empirical validation: The gap between 
laboratory advancements and practical implementation 
persists. Field trials and long-term monitoring, as seen 
in Tomšič, et al. [58] are crucial for reϐining ML models. 
Addressing gaps in studies like Kim, et al. [21] through real-
world implementation and benchmarking.

Future directions: Future work should explore adaptable 
ML frameworks that can operate across diverse production 
scales and environments. Future research should focus on 
hybrid ML models that integrate these domains, addressing 
trade-offs between efϐiciency, scalability, and sustainability. 
Field trials and long-term monitoring will be critical for 
validating ML-driven predictions, ensuring their relevance to 
global energy needs.

Future research should focus on:

Democratizing ML tools: Developing lightweight, 
accessible models to enable broader adoption.

Hybrid approaches: Combining ML with conventional 
optimization techniques to balance cost and performance.

Dataset expansion: Building publicly available, high-
quality datasets to improve ML model reliability.

Performance vs. sustainability: Studies like Shrivastav, 
et al. [89] and Bacha, et al. [90] emphasize sustainable 
materials, while others like Zhang, et al. (2024) achieve 
record efϐiciencies. Future work should strive to balance these 
priorities.
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Scalability: Bell, et al. [92] and Liu, et al. [87] highlight the 
potential for industrial integration, setting benchmarks for 
scalability-focused research.

Integration of techniques: Combining ML approaches, 
such as genetic algorithms and CNNs, can enhance performance 
across multiple dimensions.

Field validation: Many studies, including Shrivastav, et al. 
[89], remain theoretical. Emphasis should shift to real-world 
testing and lifecycle assessments.

Lifecycle integration: Incorporating sustainability 
metrics into ML frameworks to align with environmental 
goals.

Future directions and recommendations

The ϐield of machine learning (ML)-enhanced Copper(I) 
Thiocyanate (CuSCN)-based perovskite-silicon tandem solar 
cells is advancing rapidly, but signiϐicant opportunities and 
challenges remain. This section explores the emerging trends 
in machine learning (ML) for solar technologies, examines 
the potential for advanced materials and interfaces, and 
provides a proposed roadmap for future research. Table 12
shows the comparative overview of recent studies on emerging 
trends, materials, and roadmaps. By analyzing recent studies, 
this comprehensive review identiϐies the key innovations and 
challenges that deϐine the trajectory of machine learning-
enhanced perovskite-silicon tandem solar cells.

Emerging trends in machine learning for solar 
technologies

Machine learning (ML) is increasingly pivotal in advancing 
solar cell technologies, particularly for optimization, 
predictive modeling, and material discovery. Recent studies 
emphasize diverse applications of ML, such as enabling 
stability improvements, reducing manufacturing defects, and 
enhancing efϐiciency through data-driven models. 

Machine learning is reshaping the development of tandem 
solar cells through its ability to process complex datasets, 
predict material properties, and optimize production 
processes. Key trends include:

Real-time adaptation: ML models are increasingly 
used for adaptive optimization during fabrication and 
operation. Shukla, et al. [11] utilized reinforcement learning 
to dynamically adjust tandem cell conϐigurations under 
variable environmental conditions. This trend toward real-
time adaptability is also seen in Yuan, et al. [8], who integrated 
ensemble ML methods for spectral management under diffuse 
light, achieving robust efϐiciencies across diverse lighting 
environments.

Ahmed, et al. [9] developed reinforcement learning 
algorithms to optimize anti-reϐlective coatings for tandem 
solar cells under varying environmental conditions. Their 
model dynamically adjusted coating parameters in response 

Table 12: Comparative Overview of Recent Studies on Emerging Trends, Materials, and Roadmaps.
Study Year Focus Key Findings Limitations

Nguyen, et al. 2024 [29] ANN for energy yield predictions Improved accuracy by 20% for real-world conditions High computational demands for training models

Zhang, et al. 2024 [18] ML + genetic algorithms for material 
design Achieved 32.2% efϐiciency by reϐining interfacial properties Requires extensive experimental validation

Shrivastav, 
et al. 2024 [89] Lead-free perovskite optimization Balanced optical/electronic properties while achieving 

29.1% efϐiciency Dataset availability for non-toxic materials

Mariotti, et al. 2023 [88] Triple-halide interface engineering Improved stability > 20,000 hours via ML-screened 
passivation Limited scalability for commercial adoption

Roffeis, et al. 2022 [14] Life cycle assessment for tandems Highlighted reduced energy payback times for perovskite-
silicon tandems

Focused primarily on environmental metrics rather 
than efϐiciency

Tan, et al. 2022 [74] Bifacial tandem optimization Reinforcement learning improved spectral balancing for 
bifacial designs Reliance on idealized datasets

Wang, et al. 2023 [12] Transfer learning for optimization Reduced data dependency while achieving 28.9% efϐiciency Limited focus on industrial scalability
Lee, et al. 2023 [49] CNNs for defect detection 95% accuracy in identifying microstructural defects High-resolution imaging equipment increases costs

Patel, et al. 2023 [95] Bayesian ML for CuSCN dopant 
engineering

31.2% efϐiciency with improved stability and reduced 
degradation Long-term outdoor testing required

Mariotti, et al. 2023 [88] Triple-halide interface engineering Improved stability > 20,000 hours via ML-screened 
passivation Limited scalability for commercial adoption

Muller, et al. 2024 Quantum dot interfacial layers Achieved 32.5% efϐiciency with improved charge transport Proprietary materials limit reproducibility
Ahmed, et al. 2023 [9] Reinforcement learning for coatings 31.4% efϐiciency; improved stability in real-world testing Hardware requirements for spectral monitoring

Gupta, et al. 2023 [13] Unsupervised learning for defect 
mechanisms Identiϐied key environmental stressors for defect mitigation High-dimensional data dependency

Huang, et al. 2023 [4] GANs for material discovery Over 10,000 hours of thermal stability with efϐiciencies 
>30% Scaling novel materials for industrial production

Singh, et al. 2022 [6] 2D material passivation Achieved record stability with improved charge transport Labor-intensive synthesis of 2D materials

Shukla, et al. 2024 [11] Adaptive reinforcement learning Improved lifespan by 30% under dynamic environmental 
conditions Computational overhead for live monitoring

Yuan, et al. 2023 [8] Ensemble ML for spectral 
management

Achieved 31.8% efϐiciency with robust performance under 
varying light conditions Limited interpretability of ensemble models

Kumar, et al. 2024 [15] GANs for mixed-halide perovskites Enhanced UV stability and efϐiciencies of 30.5% Scalability of hybrid synthesis methods

Zhao, et al. 2023 [18] Metal-oxide passivation Improved stability and 31.2% efϐiciency through ML-
optimized thickness Complexity in deposition processes
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to real-time solar spectra, achieving 31.4% efϐiciency with 
improved stability over 2,000 hours of outdoor testing. 
Compared to Nguyen, et al. [29], Ahmed’s work provided a 
more practical, real-world approach by integrating spectral 
variability into the ML optimization process.

The study also demonstrated signiϐicant reductions in 
reϐlection losses compared to Tan, et al. [94], which relied 
on ϐixed bifacial conϐigurations. However, Ahmed, et al. 
acknowledged the complexity of implementing such adaptive 
systems on a commercial scale, particularly due to hardware 
requirements for spectral monitoring.

Shukla, et al. [11] introduced an adaptive reinforcement 
learning framework to optimize tandem cell conϐigurations 
under varying temperature and humidity conditions. Their 
model predicted degradation pathways in CuSCN transport 
layers, achieving 96% accuracy in identifying critical stress 
points. The study complements Gupta, et al. [13], which 
emphasized defect generation mechanisms, by focusing on 
real-time adaptability.

Shukla’s approach demonstrated improvements in 
operational lifespan by 30%, but the computational overhead 
required for live environmental monitoring remains a 
limitation. Their ϐindings suggest the need for simpliϐied 
reinforcement learning algorithms tailored for energy-
efϐicient deployment in industrial settings.

Predictive modeling for longevity: Studies such as 
Ahmed, et al. [9] and Gupta, et al. [13] show ML’s ability 
to predict degradation pathways and defect formation 
mechanisms. By incorporating environmental stress factors 
like UV and moisture, these models extend operational 
lifespans and reduce failure rates. 

Gupta, et al. [13] utilized unsupervised learning to explore 
defect generation mechanisms in CuSCN transport layers. 
By clustering degradation patterns, their model identiϐied 
key stressors—such as moisture and UV exposure—that 
accelerate defect formation. This complements Lee, et al. [49], 
which focused on defect detection, by providing predictive 
insights for mitigating defects during manufacturing.

The study highlighted the importance of integrating 
environmental stress simulations with defect modeling, 
a feature absent in Ahmed et al.’s reinforcement learning 
approach. While Gupta’s model offers strong predictive 
capabilities, its reliance on high-dimensional data poses 
challenges for real-time implementation.

Tan, et al. [94] explored ML-based design optimization for 
bifacial all-perovskite tandem solar cells, focusing on light 
management and spectral balancing. Using reinforcement 
learning models, the study optimized layer thicknesses and 
refractive index values to minimize reϐlection losses. The 
tandem cells achieved an efϐiciency of 29.8% under laboratory 

conditions, closely matching Zhang, et al. [10]. However, 
Tan’s work uniquely emphasized bifacial designs, which 
boost energy yield in environments with signiϐicant albedo 
contributions.

While the study advanced bifacial cell design, it relied 
heavily on idealized spectral datasets, limiting its real-
world applicability. This contrasts with Nguyen, et al. [29], 
whose ANN-based modeling considered more variable 
environmental conditions. Tan, et al. recommend combining 
bifacial designs with real-time adaptive controls, a proposal 
aligning with Zhang et al.’s hybrid ML approach.

Nguyen, et al. [29] investigated the use of artiϐicial neural 
networks (ANNs) to predict annual energy yields in building-
integrated photovoltaics based on tandem cell conϐigurations. 
Their ML model considered dynamic environmental variables, 
such as diurnal changes in light intensity and shading. 
Compared to conventional simulation tools, the ANN approach 
demonstrated a 20% improvement in prediction accuracy. 
The study aligns with Tan, et al. [71], which utilized ML for 
optimizing bifacial all-perovskite tandem designs but focused 
more on optical balancing than environmental modeling.

The practical implications of Nguyen’s work extend to 
real-world installations where environmental adaptability 
is crucial. However, scalability remains a challenge due to 
the computational demands of training such ANN models, a 
limitation echoed in other works like Gao, et al. [2].

Hybrid computational techniques: The combination of 
ML with traditional optimization techniques is gaining traction. 
For instance, Tan, et al. [94] merged ML models with physical 
simulations to optimize bifacial tandem solar cells, addressing 
light absorption and thermal management simultaneously. 
Hybrid approaches improve both accuracy and scalability, 
demonstrating the synergy between computational and 
empirical methods.

Zhang, et al. [10] combined ML techniques with genetic 
algorithms to design inverted perovskite solar cells. Their 
study achieved efϐiciencies of 32.2% by iteratively reϐining 
material compositions and interfacial properties. Unlike 
Nguyen, et al. [29], which focused on external environmental 
factors, Zhang, et al. [10] concentrated on internal material 
optimizations, showcasing how ML can accelerate the 
identiϐication of novel compositions.

The study’s use of a hybrid ML-genetic algorithm approach 
provides a robust framework for material discovery, yet the 
high reliance on experimental validation limits its industrial 
scalability. Future research could explore integrating virtual 
datasets to reduce the dependence on costly experiments.

Wang, et al. [12] introduced transfer learning techniques 
to optimize tandem solar cells with minimal training data. 
By pre-training their model on datasets from conventional 
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perovskite solar cells, they reduced the computational burden 
of optimizing tandem conϐigurations. The study achieved 
efϐiciencies of 28.9%, comparable to Nguyen, et al. [29], but 
with signiϐicantly reduced training requirements. This work 
highlights the potential of transfer learning for democratizing 
ML-driven solar cell optimization. Unlike Zhang, et al. [10], 
which required extensive data for genetic algorithm iterations, 
Wang’s model achieved comparable results with reduced data 
dependency. However, the study primarily targeted small-
scale fabrication, leaving scalability for industrial applications 
unexplored.

Yuan, et al. [8] employed ensemble ML methods to improve 
spectral management in tandem solar cells. By integrating 
random forests and support vector machines, they achieved 
31.8% efϐiciency under both standard and diffuse light 
conditions. Unlike Ahmed, et al. [9], which focused on adaptive 
coatings, Yuan, et al. [8] emphasized structural optimizations, 
such as anti-reϐlective layer geometries.

The study highlighted the robustness of ensemble models 
in handling diverse spectral data but noted challenges in 
model interpretability. Future advancements in explainable 
ML could further enhance their approach, bridging the gap 
between theoretical performance and real-world application.

ML for cost reduction: Transfer learning, as employed 
by Wang, et al. [12], highlights the potential to reduce data 
requirements for ML training, lowering computational costs 
while maintaining high efϐiciency. This trend is essential 
for democratizing ML-driven solar cell optimization across 
different manufacturing scales. 

Wang, et al. [12] introduced transfer learning techniques 
to optimize tandem solar cells with minimal training data. 
By pre-training their model on datasets from conventional 
perovskite solar cells, they reduced the computational burden 
of optimizing tandem conϐigurations. The study achieved 
efϐiciencies of 28.9%, comparable to Nguyen, et al. [29], but 
with signiϐicantly reduced training requirements.

This work highlights the potential of transfer learning 
for democratizing ML-driven solar cell optimization. Unlike 
Zhang, et al. [10], which required extensive data for genetic 
algorithm iterations, Wang’s model achieved comparable 
results with reduced data dependency. However, the study 
primarily targeted small-scale fabrication, leaving scalability 
for industrial applications unexplored.

Lee, et al. [49] employed convolutional neural networks 
(CNNs) for defect detection in CuSCN-based tandem solar cells. 
Their real-time imaging system identiϐied microstructural 
defects with 95% accuracy, enabling dynamic process 
adjustments during fabrication. Compared to reinforcement 
learning approaches like Tan, et al. [71], CNNs provided 
actionable insights without requiring iterative optimization, 
focusing instead on quality assurance.

Lee’s study complements Nguyen, et al. [29] by addressing 
real-world manufacturing challenges. However, the system’s 
reliance on high-resolution imaging equipment increases 
costs, which may hinder adoption in resource-limited 
settings. The ϐindings highlight a crucial aspect of emerging 
ML applications: balancing technical precision with economic 
feasibility.

Potential for advanced materials and interfaces

Advanced materials and interface engineering are pivotal 
for overcoming the efϐiciency-stability trade-off in perovskite-
silicon tandems and the continued evolution of perovskite-
silicon tandem solar cells. ML plays a critical role in identifying 
and optimizing these materials. 

ML techniques have proven invaluable for optimizing 
such materials, particularly by reducing the trial-and-error 
associated with traditional experimental processes.

Next-generation perovskites: Generative adversarial 
networks (GANs) are transforming material discovery, as 
seen in Huang, et al. [4], which predicted novel perovskite 
compositions with enhanced thermal and UV stability. Kumar, 
et al. [15] extended this work to mixed-halide perovskites, 
optimizing stability while maintaining efϐiciencies above 30%. 
These materials offer a pathway to more robust and efϐicient 
devices but face challenges in scalability and synthesis 
reproducibility. The ϐindings align with Huang, et al. (2023) 
[4] but emphasize durability in outdoor environments.

Huang, et al. [4] applied generative adversarial networks 
(GANs) to predict new formulations of perovskite materials 
with enhanced thermal stability. Their model generated novel 
chemical compositions that achieved over 10,000 hours of 
stability under continuous illumination, with efϐiciencies 
above 30%. This represents a signiϐicant leap from Shrivastav, 
et al. [89], which focused on lead-free alternatives but achieved 
slightly lower efϐiciency.

Compared to Muller, et al. (2024), which explored quantum 
dots, Huang’s GAN-based material prediction provided 
a broader framework for discovering stable perovskite 
materials. However, scaling these compositions for industrial 
use remains an open challenge.

Kumar, et al. [15] explored mixed-halide perovskites 
optimized using generative adversarial networks (GANs) for 
CuSCN-based tandems. Their study identiϐied formulations 
with enhanced stability under UV exposure, achieving 
efϐiciencies of 30.5%. Kumar, et al. also proposed hybrid 
synthesis methods to scale GAN-predicted formulations, 
addressing scalability concerns noted in prior studies. This 
study underscores the growing role of GANs in material 
discovery, particularly for applications where stability is 
critical.

Zhao, et al. [18] investigated layered metal-oxide 
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passivation strategies for CuSCN interfaces. Using supervised 
ML models, they optimized passivation thicknesses to 
minimize trap density and improve hole mobility. Their 
tandem cells demonstrated enhanced stability and efϐiciencies 
of 31.2%, complementing Singh, et al. [6], which focused on 
2D perovskite passivation.

While Zhao’s metal-oxide layers offer a scalable alternative 
to 2D materials, the deposition process remains complex. 
Future research should explore simpliϐied fabrication 
techniques to increase industrial applicability.

Advanced interfaces: Interfaces remain critical to device 
performance, particularly for CuSCN-based tandems. Singh, 
et al. [6] demonstrated the potential of 2D perovskites for 
passivating defects and improving charge transport. Zhao, 
et al. [18] explored ML-optimized metal-oxide passivation 
layers, which reduced interface trap densities and improved 
hole mobility. Together, these studies highlight the role of 
advanced interface engineering in reducing recombination 
losses and extending device lifetimes.

Mariotti, et al. [88] explored triple-halide perovskites for 
interface passivation in tandem solar cells. By employing ML-
driven material screening, the study identiϐied combinations 
that reduced defect states at the CuSCN interface, leading 
to stability improvements exceeding 20,000 hours under 
continuous illumination. This contrasts with Shrivastav, 
et al. [89]’s focus on lead-free alternatives by emphasizing 
performance longevity.

Patel, et al. [95] developed a new class of hybrid organic-
inorganic perovskites optimized using Bayesian ML 
algorithms. The study achieved 31.2% efϐiciency by balancing 
stability and optical absorption through dopant engineering in 
CuSCN layers. Unlike Shrivastav, et al. [89], which focused on 
lead-free materials, Patel’s approach centered on enhancing 
existing CuSCN formulations for better hole mobility and 
reduced degradation rates.

The study offers valuable insights for incremental 
improvements in CuSCN-based tandems but highlights the 
need for further research into long-term stability under 
outdoor conditions. This aligns with Mariotti, et al. [88], which 
also identiϐied passivation strategies as critical for extended 
operational lifespans.

Muller, et al. (2024) explored the potential of quantum 
dots (QDs) as interfacial layers in tandem cells, leveraging 
ML for material selection. The QD-based interfaces improved 
charge transport efϐiciency and achieved a record 32.5% 
under simulated AM1.5G conditions. Compared to Patel, et 
al. [95], Muller’s work provided a breakthrough in interfacial 
engineering but relied heavily on proprietary QD formulations, 
limiting its reproducibility.

The study demonstrates how ML accelerates the 
exploration of advanced interfacial materials but also 

underscores the importance of addressing cost and scalability 
concerns. Unlike Patel, et al. Muller, et al. (2024) proposed QD 
recycling techniques to mitigate material costs, representing a 
novel direction for sustainable interfacial engineering.

Singh, et al. [6] explored 2D perovskite layers for 
passivating interfaces in tandem cells, achieving record-high 
stability with negligible efϐiciency losses over a 5,000-hour 
operational period. By combining 2D materials with CuSCN, 
they achieved improved charge transport and reduced 
hysteresis effects. Singh’s work complements Patel, et al. 
[95], which focused on hybrid organic-inorganic solutions, by 
emphasizing dimensional control in interface engineering.

This study highlights the potential of dimensional 
engineering for interface passivation but notes that the 
synthesis of high-quality 2D layers remains labor-intensive. 
Future research should explore scalable deposition techniques 
for 2D materials.

Sustainable material alternatives: There is a growing 
emphasis on sustainable and non-toxic materials. Shrivastav, 
et al. [89] focused on lead-free perovskite formulations 
optimized through supervised ML, achieving efϐiciencies 
nearing those of traditional lead-based counterparts. 
Expanding this work to include scalable, environmentally 
friendly synthesis methods is critical for commercial viability.

Shrivastav, et al. [89] leveraged supervised ML models to 
identify optimal halide compositions for lead-free perovskite 
materials. Their work focused on balancing optical and 
electronic properties while maintaining environmental safety. 
Compared to Zhang, et al. [10], this study emphasized non-
toxic material alternatives, achieving competitive efϐiciencies 
of 29.1%.

While promising, the study faced challenges in dataset 
availability for non-toxic alternatives, highlighting a key area 
for improvement: expanding databases through collaborative 
research. This limitation resonates with Nguyen, et al. [29], 
who also underscored dataset constraints in their energy 
yield predictions.

Proposed roadmap for future research

The collective insights from these studies underscore the 
necessity of an integrated approach that combines advanced 
materials with ML-driven methodologies. To fully realize the 
potential of ML-enhanced tandem solar cells, future research 
must address several critical areas. Key recommendations for 
future research include:

Data infrastructure (Open data initiatives): As 
highlighted by Nguyen, et al. [29] and Shrivastav, et al. 
(2024), dataset availability remains a bottleneck for ML 
advancements. Collaborative efforts to establish open-access 
repositories for material properties and fabrication processes 
could democratize access to ML tools across academia and 
industry.
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Addressing dataset limitations, as noted by Nguyen, et al. 
[29] and Shrivastav, et al. [89], requires collaborative efforts to 
establish open-access repositories for material properties and 
device conϐigurations. The scarcity of large-scale, high-quality 
datasets is a major bottleneck for ML in solar technologies. 
Collaborative efforts to establish open-access repositories, 
as suggested by Kumar, et al. [15] and Huang, et al. [4], could 
provide the data necessary for training more robust and 
generalizable ML models. The scarcity of large-scale datasets 
for ML training, highlighted by Kumar, et al. [15] and Huang, 
et al. [4], underscores the need for open-access platforms that 
consolidate experimental and simulated data. Collaborative 
data-sharing initiatives could democratize ML-driven solar 
cell optimization, fostering innovation across academia and 
industry.

Lightweight ML algorithms and real-time optimization 
frameworks: To ensure broader adoption, lightweight ML 
algorithms must be developed. These models should balance 
computational efϐiciency with predictive accuracy, enabling 
real-time optimization in resource-constrained manufacturing 
environments. Studies like Wang, et al. [12] provide a starting 
point, but further work is needed to reϐine these techniques 
for industrial deployment. Ahmed, et al. [9] and Gupta, et al. 
[13] demonstrated the feasibility of integrating real-time 
ML optimizations into tandem solar cell workϐlows. Future 
research should aim to develop lightweight algorithms that 
balance adaptability with computational efϐiciency, enabling 
broader industrial adoption.

Enhanced predictive models and integration with 
sustainability metrics: Future ML workϐlows should 
incorporate life cycle assessments (LCA) to align material 
discovery and process optimization with sustainability goals. 
Studies like Huang, et al. [4] and Singh, et al. [6] highlight the 
need for predictive models that encompass both stability and 
performance metrics. Incorporating life cycle data into these 
models, as suggested by Roffeis, et al. [14], could further align 
ML-based optimizations with sustainability goals. Studies like 
Roffeis, et al. [14] emphasize sustainability, which should be 
integrated into ML workϐlows to ensure ecological viability 
alongside efϐiciency gains. Roffeis, et al. [14] highlighted the 
environmental beneϐits of tandem solar cells but noted the 
need for holistic design frameworks that consider ecological 
impact alongside performance metrics. Emerging studies, 
such as Zhao, et al. [18] and Kumar, et al. [15], point to the 
importance of integrating sustainability metrics into ML 
workϐlows. By combining life cycle assessment tools with 
predictive ML models, researchers can ensure that novel 
materials align with ecological goals.

Scalable manufacturing techniques and cross-
disciplinary collaboration: Translating lab-scale innovations 
to commercial production remains a persistent challenge. 
Bridging material science, ML, and industrial engineering will 
be critical for translating lab-scale breakthroughs into market-

ready solutions. Collaborative industry-academic partnerships 
could accelerate the development of such techniques. Future 
research should focus on scalable deposition techniques for 
advanced materials, such as the 2D perovskites proposed 
by Singh, et al. [6] and the hybrid formulations identiϐied by 
Patel, et al. [95]. 

Advanced interface development: Emerging materials 
like quantum dots (Muller, et al. 2024) and hybrid perovskites 
[95] offer signiϐicant potential for interfacial engineering. 
Future research should focus on scalable manufacturing 
techniques for these materials, addressing cost and 
reproducibility challenges.

Hybrid optimization models: Combining ML with 
traditional optimization methods could provide a middle 
ground between computational intensity and experimental 
validation. Shukla, et al. [11] and Tan, et al. [94] demonstrated 
the value of hybrid models for addressing complex, multi-
variable optimization problems. Expanding this approach 
across the full solar cell development pipeline could improve 
both efϐiciency and scalability.

Studies like Zhang, et al. [10] and Shrivastav, et al. 
[89] show the potential of combining ML with physical 
experiments. Developing hybrid frameworks that integrate 
virtual simulations with limited experimental validations 
could enhance scalability.

Integrating transfer learning [12] with defect detection 
[49] offers a pathway for reducing data dependency while 
ensuring real-time quality assurance. Future research 
could develop frameworks that combine these approaches, 
leveraging strengths in low-data optimization and real-time 
monitoring.

Studies like Shukla, et al. [11] and Yuan, et al. [8] 
demonstrate the potential of hybrid ML models that integrate 
environmental adaptability with structural optimization. 
Developing lightweight algorithms capable of real-time 
adaptability without excessive computational demands is a 
key priority for future research.

By following this roadmap, the ϐield of ML-enhanced 
tandem solar cells can address its most pressing challenges 
while capitalizing on its transformative potential. These 
efforts will drive the widespread adoption of renewable 
energy technologies, contributing signiϐicantly to global 
sustainability goals.

Conclusion
The ϐinal section synthesizes the key ϐindings from the 

review and presents a forward-looking perspective on the 
transformative role of machine learning (ML) in advancing 
Copper(I) Thiocyanate (CuSCN)-based perovskite-silicon 
tandem solar cells.
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The summary of ϐindings and key takeaways in this 
comprehensive review highlights the substantial progress 
and remaining challenges in the development of ML-enhanced 
tandem solar cells:

Emerging trends in machine learning for solar 
technologies: ML has redeϐined optimization strategies 
for tandem solar cells, enabling faster material discovery, 
real-time process monitoring, and predictive modeling 
for long-term stability. Studies like Shukla, et al. [11] and 
Yuan, et al. [8] demonstrated how ML models could adapt 
dynamically to environmental conditions, improving the 
operational efϐiciency and robustness of solar cells. However, 
computational demands and dataset availability remain 
signiϐicant barriers.

Advancements in Materials and Interfaces Innovations 
in material design and interface engineering, such as GAN-
predicted perovskite formulations [4] and 2D material 
passivation layers [6], have improved device stability and 
efϐiciency. CuSCN has emerged as a promising hole transport 
material, with optimized formulations achieving efϐiciencies 
beyond 30% while maintaining stability over thousands 
of hours. Despite these advancements, scalability and cost 
remain persistent challenges.

Proposed Roadmaps for Research Integrating ML 
frameworks with open-access datasets and sustainability 
metrics could accelerate the commercialization of tandem 
solar cells. Collaborative platforms, such as those suggested 
by Kumar, et al. [15], could bridge the gap between lab-scale 
innovation and industrial-scale production. Additionally, 
lightweight ML algorithms for defect detection and process 
control offer a path toward energy-efϐicient, cost-effective 
implementation.

The comparative analysis of ML-driven and conventional 
optimization methods underscored the superiority of data-
driven approaches in balancing efϐiciency, scalability, and 
environmental impact. However, hybrid strategies that 
combine ML insights with traditional methodologies could 
address the limitations of both approaches, fostering a more 
holistic development paradigm.

Final thoughts on the role of machine learning 
in tandem solar cells: Machine learning has become a 
cornerstone in the evolution of perovskite-silicon tandem 
solar cells, offering unprecedented capabilities in material 
discovery, design optimization, and process control. By 
enabling real-time adaptability and predictive precision, 
ML tools address critical bottlenecks that have historically 
hindered the scalability and reliability of tandem technologies.

However, the path forward requires a careful balancing 
of computational complexity, data availability, and industrial 
feasibility. Collaborative efforts to develop open-access 
repositories and lightweight ML models will be instrumental 

in democratizing this technology. Furthermore, integrating 
sustainability metrics into ML workϐlows can align 
technological advancements with global environmental goals, 
ensuring that the widespread adoption of tandem solar cells 
contributes to a sustainable energy future.

In conclusion, the conϐluence of ML and advanced materials 
science has set the stage for transformative progress in 
solar cell technologies. As research continues to push the 
boundaries of efϐiciency and scalability, ML-enhanced CuSCN-
based tandem solar cells hold immense potential to redeϐine 
the future of renewable energy, driving us closer to achieving 
global energy sustainability targets.
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