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Abstract

Bifurcation analysis and Multiobjective Nonlinear Model Predictive Control (MNLMPC) 
calculations were performed on a model of circadian oscillations of the Period (PER) and 
Timeless (TIM) proteins in Drosophila. The MATLAB program MATCONT was used to perform 
the bifurcation analysis. The optimization language PYOMO was used along with the state-of-the-
art global optimization solvers IPOPT and BARON for the MNLMPC calculations. The bifurcation 
analysis revealed oscillation causing Hopf bifurcations while the MNLMPC calculations revealed 
the existence of spikes in the control proϐiles. Both Hopf bifurcation points and the control proϐile 
spikes were eliminated using an activation factor involving the hyperbolic tangent function.

Background
Decroly, et al. [1] discovered the chaotic behavior in multiply regulated biochemical systems. Alamgir and Epstein [2] 

studied the oscillations in coupled chemical oscillators of the chlorite-bromate-iodide system. Aronson, et al. [3] studied the 
negative feedback deϐining a circadian clock. Baylies, et al. [4] conducted genetic, molecular, and cellular studies of the per 
locus and its products in Drosophila melanogaster. Crosthwaite, et al. [5] investigated the photo responses and the origins 
of circadian rhythmicity. Curtin, et al. [6] demonstrated how the temporally regulated nuclear entry of the Drosophila period 
protein contributes to the circadian clock. Dunlap [7] performed a genetic and molecular analysis of circadian rhythms. Edery, 
et al. [8.9] studied the phase shifting of the circadian clock by induction of the Drosophila period protein and its Temporal 
phosphorylation. Edmunds [10] discussed models and mechanisms for Circadian Timekeeping.

Eskin, et al. [11] investigated the requirement for protein synthesis to regulate the circadian rhythm by melatonin. Gekakis, 
et al. [12] demonstrated the Defective interaction between timeless protein and long-period mutant. Goldbeter [13] developed 
a model for circadian oscillations in the Drosophila period (PER) protein. Goldbeter [14] wrote a textbook in Biochemical 
Oscillations and Cellular Rhythms. Goodwin [15] minvestigated the oscillatory behavior in enzymatic control processes. Hall 
and co-workers [16-18] studied the molecular effects on biological rhythms. Hong and Tyson [19] investigated temperature 
compensation of the circadian rhythm in Drosophila based on dimerization of the PER protein. Huang, et al. [20] studied PER 
protein interactions and temperature compensation of a circadian clock in Drosophila. Khalsa, et al. [21] studied techniques for 
stopping the circadian pacemaker with inhibitors of protein synthesis Konopka and Benzer [22] investigated clock mutants 
of Drosophila melanogaster. Lee, et al. [23] discuss strategies for resetting the Drosophila clock by photic regulation of PER. 
and a PER-TIM complex. Leloup and Goldbeter [24] researched temperature compensation of circadian rhythms. Marus, et 
al. [25] studied the effect of constant light and circadian entrainment of perS ϐlies. Myers, et al. [26] studied the light-induced 
degradation of TIMELESS and entrainment of the Drosophila circadian clock. Qiu and Hardin [27] showed that the per mRNA 
cycling is locked to lights-off under photoperiodic conditions that support the circadian feedback loop function. Rosbash 
[28] studied the molecular control of circadian rhythms. Rutila, et al. [29] discuss t the timsl mutant of the Drosophila rhythm 
gene timeless manifests allele-speciϐic interactions with period gene mutants. Saez and Young [30] discuss the regulation of 
nuclear entry of the Drosophila clock proteins period and timeless. Saunders, et al. [31] discuss the Light-pulse phase response 
curves for the locomotor activity rhythm in period mutants of Drosophila melanogaster. Sehgal, et al. [32] studied the loss of 
circadian behavioral rhythms and per RNA oscillations in the Drosophila mutant timeless. So and Rosbash [33] showed that post-
transcriptional regulation contributes to Drosophila clock gene mRNA cycling. Taylor, et al. [34] demonstrate that inhibitors of 
protein synthesis on 80S ribosomes phase shift the Gonyaulax clock. Vosshall, et al. [35] show the existence of a block in nuclear 
localization of period protein by a second clock mutation, timeless. Young, et al. [36] discuss the molecular anatomy of a light-
sensitive circadian pacemaker in Drosophila.
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Zeng and co-workers [37,38] conducted further research about the Drosophila circadian clock. Reitz, et al. [39], Mia, et al. 
[40], Parcha, et al. [41] and Teeple, et al. [42] studied the relationships between obesity and Circadian rhythms, while Tobeiha, 
et al. [43] and Festus, et al. [44] studied the effects of cardiovascular health on Circadian rhythms.

Leloup JC, Goldbeter [45] developed a model for circadian rhythms in Drosophila incorporating the formation of a complex 
between the PER and TIM proteins. In this work a) bifurcation analysis is performed on the Leloup Goldeter model for circadian 
rhythms in Drosophila to identify and eliminate the Hopf bifurcations and b) Multiobjective NonlinearMmodel Predictive 
Control(MNLMPC) calculations are performed to ensure maximum production of the required product while simultaneously 
minimizing all the unwanted by-products. 

Motivation and objectives 

Circadian rhythms are endogenous limit cycle oscillations characterized for 24 hours. They constitute the biological rhythms 
with the longest period known to be generated at the molecular level. Oscillations are caused by Hopf bifurcation point. Limit 
cycle oscillations occur because of Hopf bifurcations. These bifurcations cause spikes in control proϐiles when one tries to 
control the process to achieve maximum beneϐit. These spikes hinder optimization and control tasks. The motivation of this 
work is to eliminate the limit cycle causing Hopf bifurcations and the spikes in control proϐiles when dynamic optimization 
tasks are performed. Hence, the main objectives of this work are a) Identify the Hopf bifurcation points computationally 
perform bifurcation analysis using MATCONT (a Matlab software for performing bifurcation analysis) b) Use an activation 
factor involving the tanh function to eliminate these Hopf bifurcation points c) Perform Multiobjective Nonlinear Model 
Predictive Control(MNLMPC) calculations for the Drosophila circadian rhythms model (Leloup Goldeter; [45]) d) Demonstrate 
the existence of spikes in the control proϐile when these calculations are performed) Use the tanh function’s activation factor to 
eliminate the control proϐile spikes. This paper is organized as follows. First, the Drosophila circadian rhythms model (Leloup 
Goldeter; [45]) details are presented. This is followed by describing the bifurcation analysis and Multiobjective Nonlinear Model 
Predictive Control(MNLMPC) procedures. The results and discussion section is then presented followed by the conclusions. 

Drosophila circadian rhythms model

In this model, PER stands for period protein TIM stands for timeless protein. Mp, P0, P1, P2 stand for cytosolic concentration 
of PER mRNA , unphosphorylated PER , monophosphorylated PER and bisphosphorylated PER. MT, T0, T1, T2 stand for cytosolic 
concentration of TIM mRNA , unphosphorylated TIM, monophosphorylated TIM and bisphosphorylated. C represents the 
complex formed by the degradation of P2 and T2 while CN represents the nuclear form of the PER-TIM complex. The mRNAs 
are synthesized at rates of vSP, vST with rate constants Ksp, KsT. The subsequent degradation takes place at rates vmP, vmT with rate 
constants Kmp, KmT. k1p, k2p, k3p, k4p are the kinase rate constants while k1T, k2T, k3T, k4T are the phosphatase rate constants. v1p, v2p, v3p, v4p 
represents the maximum kinase rate while v1T, v2T, v3T, v4T represents the maximum phosphatase rate. More details can be found 
in Leloup and Goldeter [45]. The base parameter values are 
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The equations that constitute this model are 
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Bifurcation analysis 

Multiple steady-states and oscillatory behavior occur in various situations. Multiple steady states occur because of t Branch 
and Limit bifurcation points cause multiple steady-states. Hopf bifurcation points produce oscillatory behavior. Ions and limit 
cycles. The MATLAB program MATCONT. (Dhooge Govearts, and Kuznetsov [46], Dhooge Govearts, Kuznetsov, Mestrom and 
Riet, [47]) is commonly used software to locate limit points, branch points, and Hopf bifurcation points. Consider an ODE system 
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β is the bifurcation parameter. The matrix A can be written in a compact form as 

[ | / ]A B f             (13)

The tangent at any point x; ( [ , , , , .... ]1 2 3 4 1v v v v v vn  ) must satisfy 

Av = 0         (14)

The matrix B must be singular at both limit and branch points. The n+1th component of the tangent vector Vn+1 = 0 at a limit 

point (LP) and for a branch point (BP) the matrix 
A
T

v

 
 
 

 must be singular. At a Hopf bifurcation, 

det(2 ( , ) @ ) 0f x Ix n          (15)

@ indicates the bialternate product while In is the n-square identity matrix. Hopf bifurcations cause unwanted oscillatory 
behavior and should be eliminated because oscillations make optimization and control tasks very difϐicult. More details can be 
found in Kuznetsov [48,49] and Govaerts [50]. 

Multiobjective nonlinear model predictive control 

Flores Tlacuahua z [51] ϐirst proposed the Multiobjective nonlinear model predictive control method that does not involve 
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weighting functions, nor does it impose additional constraints on the problem unlike the weighted function or the epsilon 
correction method(Miettinen, [52]). For a a set of ODE 

( , )

( , ) 0 ;

dx
F x u

dt
L U L U

h x u x x x u u u



    

       (16)

let ( )
0

t ti f
p tj iti





 (j = 12..n); be the variables that need to be minimized/maximized simultaneously, tf being the ϐinal time value, 

and n the total number of variables that need to be optimized simultaneously. In this MNLMPC method dynamic optimization 

problems that independently minimize/maximize each variable ( )
0

t ti f
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

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t ti f
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p j  . Then the optimization problem that will be solved is 

* 2min( ( ( ) ))
1 0

( , );

t ti fn
p t pj i jj ti

dx
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        (17)

This will provide the control values for various times. The ϐirst obtained control value is implemented and the rest are 
ignored. The procedure is repeated until the implemented and the ϐirst obtained control values are the same or if the Utopia 

point ( *( )
0

t ti f
p t pj i jti


 


; for all j) is achieved. The optimization package in Python, Pyomo (Hart, et al. [53]), where the differential 

equations are automatically converted to algebraic equations will be used. The resulting optimization problem was solved using 
IPOPT (Wächter and Biegler [54]). The obtained solution is conϐirmed as a global solution with BARON (Tawarmalani, M. and 
N. V. Sahinidis [55]). 

Results and discussion 
For the three bifurcation parameters kSp, kdN, vmP; the bifurcation analysis revealed Hopf bifurcation points that disappeared 

when the bifurcation parameters were modiϐied with the activation factor involving the tanh function. The bifurcation 
parameters kSp, kdN, each resulted in one Hopf bifurcation point, while vmP resulted in two Hopf bifurcation points. The bifurcation 
parameters were treated as time dependent variables while the other parameters were the base parameters. Whenks ksP was 
the bifurcation parameter the Hopf bifurcation point was found at the point x = (Mp, P0, P1, P2, MT, T0, T1, T2, C, CN, ksP) = (0.311096 
0.847336 1.070162 6.587611 0.311096 0.082204 0.076131 0.030362 0.375862 1.073892 6.559451). The limit cycle resulting 
from this Hopf bifurcation point is shown in Figure 1a. The Hopf bifurcation point and the limit cycle disappeared when ksP was 
modiϐied to ksP tanh(ksP) / 10 (Figure 1b).

Figure 1a: Limit cycle when ksp is the bifurcation parameter.
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When kdN was the bifurcation parameter the Hopf bifurcation point was found at the point x = (Mp, P0, P1, P2, MT, T0, T1, T2, C, 
CN, kdN) = (3.291832 1.453513 1.441881 1.434564 3.291832 1.453513 1.441881 1.434564 2.175841 0.816001 1.399881). The 
limit resulting from this Hopf bifurcation point is shown in Figure 2a. The Hopf bifurcation point and the limit cycle disappeared 
when kdN was modiϐied to kdN tanh(kdN) / 40 (Figure 2b) When vmP was the bifurcation parameter 2 Hopf bifurcation points 
was found at x = (Mp, P0, P1, P2, MT, T0, T1, T2, C, CN, vmP) = (0.546958 0.149307 0.138973 0.062696 2.117375 0.760434 0.880921 
2.514633 0.296267 0.846478 0.894904) and at (0.410086 0.109841 0.101970 0.043180 2.179160 0.795708 0.957074 
3.642237 0.295544 0.844413 0.980167). The limit cycles resulting from these Hopf bifurcation points are shown in Figures 
3a and 3b. The Hopf bifurcation points and the limit cycles disappeared when vmP was modiϐied to vmP tanh(vmP) / 320 (Figure 
3c). For the MNLMPC calculations (ksP, kdN, vmP) were the time-dependent control variables while the other parameters were the 

base values. ( ( ) ( ) ( ) ( ))1 2 1 2
0

t ti f
P P t P t T t T ti i i iTSUM ti


   


 was minimized ϐirst and the minimum value obtained was zero. Then 

( ( ))
0

t ti f
M M tiTTSUM ti





 was maximized and the resulting maximum value was 10. The objective function for the MNLMPC 

minimized was 2 2( 10) ( 0)M PTSUM TSUM    . The ϐirst obtained control values of (ksP, kdN, vmP) was implemented, the remaining 
discarded and the procedure was repeated until there was no difference between the implemented and the ϐirst obtained 
control values. These are the MNLMPC control values. When no activation factor was used, the MNLMPC control values were 
(ksP, kdN, vmP) = (1.4140861276802486 0.9640332102915072 0.6100640938226989).when ksP was modiϐied to ksP tanh(ksP) / 
10 when kdN was modiϐied to kdN tanh(kdN) / 40 and when vmP was modiϐied to vmP tanh(vmP) / 320, and the same procedure 
was followed, the resulting MNLMPC control values were (ksP, kdN, vmP) = (4.999999140881666, 0.0013130511044215727, 
4.9999568900984945). Figures 4a-4f show the various MNLMPC proϐiles when no activation factor was used. The proϐiles 
obtained when ksP was modiϐied to ksP tanh(ksP) / 10 when kdN was modiϐied to kdN tanh(kdN) / 40 and when vmP was modiϐied 
to vmP tanh(vmP) / 320 are shown in Figures 5a-5f. Figures 4c, 4d, and 4e show spikes in the control proϐiles. These spikes 
disappeared when the activation factor with the tanh function was implemented. The tanh activation function is used in neural 
nets (Dubey, et al. [56]; Kamalov, et al. [57] and Szandała) and [58] optimal control problems (Sridhar [59]) to eliminate spikes 

Figure 1b: Hopf bifurcation point and limit cycle disappears when ksp is modiϐied to ksp(tanh(ksp))/10.

Figure 2a: Limit cycle when kdn is the bifurcation parameter.
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Figure 2b: Hopf bifurcation point and limit cycle disappears when kdn is modiϐied to kdn(tanh(kdn))/40.

Figure 3a: First Limit cycle when vmp is the bifurcation parameter.

Figure 3b: Second Limit cycle when vmp is the bifurcation parameter.

Figure 3c: Both limit cycles disappear when vmp is modiϐied to vmp tanh(vmp)/320.
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Figure 4a: MNLMPC calculation t0, t1, t2 vs. t no activation factor used.

Figure 4b: MNLMPC calculation P0, P1, P2 vs. t no activation factor used.

Figure 4c: MNLMPC calculation kdm vs. t no activation factor used.

Figure 4d: MNLMPC calculation ksp vs. t no activation factor used.
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Figure 4e: MNLMPC calculation vmp vs. t no activation factor used.

Figure 4f: MNLMPC calculation mt vs. t no activation factor used.

Figure 5a: MNLMPC calculation T0, T1, T2 vs. t with activation factor.

Figure 5b: MNLMPC calculation P0, P1, P2 vs. t with activation factor.
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Figure 5c: MNLMPC calculation kdm vs. t with activation factor.

Figure 5d: MNLMPC calculation ksp vs. t with activation factor.

Figure 5e: MNLMPC calculation vmp vs. t with activation factor.

Figure 5f: MNLMPC calculation mt vs. t with activation factor.



Bifurcations and control studies in Circadian Rhythms in Drosophila

 www.clinmedcasereportsjournal.com 063https://doi.org/10.29328/journal.acr.1001128

in the optimal control proϐile. The tanh factor effectively eliminates spikes that occur in control proϐiles. Hopf bifurcation points 
cause oscillatory behavior. Oscillations are similar to spikes and the results demonstrate that the tanh factor also eliminates the 
Hopf bifurcation by preventing the occurrence of oscillations. Sridhar [60] explained with several exampleshow the activation 
factor involving the tanh activation function (where a bifurcation parameter u isreplaced by (u tanh u/ε) successfully eliminates 
the limit cycle causing Hopf bifurcation points. 

While intermediate periodic oscillations in Circadian rhythm models have been shown, this article demonstrates that Hopf 
bifurcations cause these intermediate periodic oscillations. It is also shown that these Hopf bifurcations can be eliminated using 
the tanh activation factor. The spikes in the control proϐiles are also eliminated by the same activation factor. 

Conclusion
This work shows that intermediate Hopf bifurcations that cause limit cycles can occur in circadian models involving the 

Period (PER) and Timeless (TIM) proteins in Drosophila. Furthermore, the Hopf bifurcation points also cause spikes in the 
control proϐiles when Multiobjective nonlinear model predictive calculations are performed. These spikes make control tasks 
difϐicult. This research demonstrates that when an activation factor involving the tanh function is used, the oscillation causing 
Hopf bifurcations and the spikes in the control proϐiles are eliminated. 
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