Abstract

Short Communication

Transformative Convergence: Exploring the Nexus of Engineering, Science and Technology in Intensive Care

Ever Leonardo Rojas-Díaz*

Published: 23 May, 2024 | Volume 8 - Issue 2 | Pages: 056-057

In the last decade, convergence science has been described as the solution to problems by integrating biological sciences with the physical, mathematical and computational sciences. This concurrence opens the pitch to strengthen multidisciplinary, transdisciplinary and interdisciplinary work. This short review delves into the transformative integration of engineering, science and technology in the dynamic realm of intensive care. Unveiling recent advancements, the exploration spans the multifaceted contributions of these disciplines toward elevating patient care and optimizing healthcare systems.

Read Full Article HTML DOI: 10.29328/journal.acr.1001095 Cite this Article Read Full Article PDF

Keywords:

Big data; Data analysis; Engineering; Science; Technology; Intensive care; Interdisciplinary research

References

  1. Pinsky MR, Dubrawski A. Gleaning knowledge from data in the intensive care unit. Am J Respir Crit Care Med. 2014 Sep 15;190(6):606-10. doi: 10.1164/rccm.201404-0716CP. PMID: 25068389; PMCID: PMC4214111.
  2. Agniel D, Kohane IS, Weber GM. Biases in electronic health record data due to processes within the healthcare system: retrospective observational study. BMJ. 2018 Apr 30;361:k1479. doi: 10.1136/bmj.k1479. Erratum in: BMJ. 2018 Oct 18;363:k4416. PMID: 29712648; PMCID: PMC5925441.
  3. Hu X. An algorithm strategy for precise patient monitoring in a connected healthcare enterprise. NPJ Digit Med. 2019 Apr 30;2:30. doi: 10.1038/s41746-019-0107-z. PMID: 31304377; PMCID: PMC6550269.
  4. Maslove DM, Lamontagne F, Marshall JC, Heyland DK. A path to precision in the ICU. Crit Care. 2017 Apr 3;21(1):79. doi: 10.1186/s13054-017-1653-x. PMID: 28366166; PMCID: PMC5376689.
  5. Escobar GJ, Liu VX, Schuler A, Lawson B, Greene JD, Kipnis P. Automated Identification of Adults at Risk for In-Hospital Clinical Deterioration. N Engl J Med. 2020 Nov 12;383(20):1951-1960. doi: 10.1056/NEJMsa2001090. PMID: 33176085; PMCID: PMC7787261.
  6. Pinsky MR, Dubrawski A, Clermont G. Intelligent Clinical Decision Support. Sensors (Basel). 2022 Feb 12;22(4):1408. doi: 10.3390/s22041408. PMID: 35214310; PMCID: PMC8963066.
  7. Yoon JH, Jeanselme V, Dubrawski A, Hravnak M, Pinsky MR, Clermont G. Prediction of hypotension events with physiologic vital sign signatures in the intensive care unit. Crit Care. 2020 Nov 25;24(1):661. doi: 10.1186/s13054-020-03379-3. PMID: 33234161; PMCID: PMC7687996.
  8. Datta R, Singh S. Artificial intelligence in critical care: Its about time! Med J Armed Forces India. 2021 Jul;77(3):266-275. doi: 10.1016/j.mjafi.2020.10.005. Epub 2021 Mar 18. PMID: 34305278; PMCID: PMC8282528.
  9. Teng R, Ding Y, See KC. Use of Robots in Critical Care: Systematic Review. J Med Internet Res. 2022 May 16;24(5):e33380. doi: 10.2196/33380. PMID: 35576567; PMCID: PMC9152725.
  10. Chbat N, Sacristan E, Laine A. Health-care technology: Industrial and clinical applications. IEEE Eng Med Biol Mag. 2010 Mar-Apr;29(2):17. doi: 10.1109/memb.2009.935703. Corrected and republished in: IEEE Eng Med Biol Mag. 2010 May-Jun;29(3):85. PMID: 21714180.

Figures:

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More

Help ?